Canadian Meteorology: Encyclopedia Arctica 7: Meteorology and Oceanography
Canadian Meteorology
EA: Meteor.
[Department of Transport,
Air Services Meteorological Division,
Toronto, Canada]
CANADIAN METEOROLOGY
Page | |
History of the Canadian Weather Service | 1 |
History of the Canadian Arctic and Sub-Arctic Weather Stations |
14 |
Arctic Expeditions in Which the Canadian Meteorological Service Participated |
43 |
Climate of Arctic and sub-Arctic Canada | 52 |
Arctic Observing Techniques | 88 |
Directors of the Meteorological Service of Canada | 91 |
References | 96 |
Three charts: | Mean Pressure |
Mean Temperature | |
Climatic Regions of Arctic and Subarctic Canada |
observations are those made by the Jesuit Missionaries in the 17th century.
Their records, known as the Jesuit Relations, date back to 1610 and contain
many references to climatic phenomena which permit some comparison to be made
between the climate of that period and the present. That the climate then was
much the same as it is today may be seen from the following excerpts which are
quoted from the Jesuit Relations for the period 1610-1614.
situated on the St. Lawrence River. The whole country possesses a
healthful climate but is harassed by a long and cold winter. This is
caused partly by--the abundance of snow with which the land in its
most northern regions, which lie upon the same parallel, as old France,
is continually desolated for three or four months.” ---- “I noticed
once that two February days ---- were as beautiful, mild and springlike
as are those in France about that time, nevertheless, the third day
after, it snowed a little and the cold returned. Sometimes in summer,
the heat is as intolerable, or more so, than it is in France.”
Hudson’s Bay Company in the 18th century, for example, at York Factory in
1772 and 1773. However, it was not until 1839, when Lieutenant Charles
James Buchanan Riddell of the Royal Artillery arrived in Montreal to establish
a magnetic observatory, that an organized weather service was founded in
Canada.
wide attention in the early part of the 19th century, and in 1838 the
British Association for the Advancement of Science brought to the attention
of the Government the desirability of obtaining a series of simultaneous
magnetic observations at various points in the British colonies. The
recommendations of Baron von Humboldt of Germany, Major Edward Sabine, the
President of the Royal Society, and the Committee of the British Association
were adopted by the Government and four expeditions were sent out in 1839.
were Canada, van Diemen Island, St. Helena and the Cape of Good Hope. The
expedition to van Diemen Island was conducted by the British Admiralty and
the other three were under the Ordnance Department, the duties to be performed
by officers and soldiers of the Royal Artillery. It was suggested that the
observations at these stations should include meteorological as well as
magnetic phenomena.
vicinity of Montreal made it an undesirable location for a magnetic observatory.
He obtained permission to choose a suitable site at Toronto instead, and
observations were begun in an unused barracks of Old Fort York on Christmas
Day, 1839. A grant of land was obtained from King’s College (now the University
of Toronto) in 1840 in order that the Observatory might be established in
appropriate scientific surroundings and the Meteorological Service has been
closely affiliated with this University ever since. A complete set of
meteorological instruments was installed, including a barometer which remained in active service as the standard barometer for Canada until 1939.
His successor, Lieutenant (General Sir) John Henry Lefroy was posted to Toronto
from the Observatory at St. Helena. Lefroy was a true scientist with a genuine
enthusiasm for his work, and under his able administration, the Observatory was
guided through its critical formative period.
a magnetic survey of the far North-West. His survey covered a route extending
to Hudson’s Bay and along the Mackenzie River as far north as Fort Good Hope
by means of canoe transport provided by the Hudson’s Bay Company. At each
stopping point, Lefroy an
observations.
from as broad an area as possible and obtained permission to place an observing
book in each of the military guard-rooms across the land. By this means, he
was able to collect data from Queenston, Montreal, Kingston, Toronto, London,
Fredericton, Halifax and Newfoundland. He also endeavoured to bring about a
plan whereby the various high schools across Canada would take regular weather
observations. Unfortunately, the necessary legislation was not passed until
1854 after Lefroy had returned to England. Observations were begun at twelve
high schools in 1858 and these were continued until 1876 when the government
grant for this purpose was discontinued.
Observatory for a three-year period, and when this expired, the Ordnance Department maintained it on a year-to-year basis only. In 1850 the military
authorities decided to withdraw altogether and for a time it seemed likely that
the work at the Observatory would be discontinued. However, the Canadian
(now Royal Canadian) Institute along with kindred societies prevailed upon the
Legislative Council of the Province of Canada to ensure the continuance of the
Observatory. In 1853 a transfer was completed whereby the Observatory was
turned over to Professor J.B. Cherriman of the University of Toronto on behalf
of the Government of Canada. The non-commissioned officers of the Royal
Artillery, who had been taking the observations at Toronto, were given a
discharge from the Army and continued to work at the Observatory. One of them,
Thomas Menzies, was with Riddell when the Observatory was first established,
and he continued as an active observer until his death in 1887.
G.T. Kingston, the Head of the Naval College in Quebec, was appointed Professor
of Natural Philosophy at the University of Toronto. Before Professor
Kingston arrived to take up his new position, Professor Cherriman managed to
negotiate a switch whereby he was made Professor of Natural Philosophy and
Professor Kingston was appointed Professor of Meteorology and Director of the
Observatory.
by the Government, but through Professor Kingston’s strenuous efforts, a
sufficient grant was voted to enable the Observatory to carry on. The faith
that Professor Kingston had that the work of the Observatory would ultimately
be of great benefit to Canada is illustrated in his first annual report to the Auditor-General in 1855 from which the following excerpt is quoted.
to the scientific world the materials necessary for evolving the laws
that regulate the magnetic and meteorological phenomena of the earth.
speculative character might obtain their solution by a course of
diligent observation extended through a long period of years. The
possible realization of these objects should be borne in mind in
estimating the utility of an observatory which it would be unfair to
measure wholly by its more obvious and immediate results.”
weather reports from several points could be received at a central office, the
motion of weather systems could be followed to a certain extent and thus
weather forecasts could be prepared. The newly invented telegraph provided
the required rapid means of communication and in 1857, Professor Kingston
read a paper before the Canadian Institute on the possible use of telegraphic
reports in weather forecasting. His hearers were favourably impressed and a
committee was appointed to report on the matter. The committee recommended
that Government support as well as private aid be granted for the purpose of
establishing certain stations from which these reports might be received.
The Canadian Government provided a grant of $5000. in 1871 to carry out this
work and the Meteorological Service of Canada was organized under the
Department of Marine and Fisheries.
data
reports from Port Stanley, Port Dover, Saugeen, Toronto, Kingston and Quebec
to Washington was begun in 1872 and in return, reports from 15 United States
stations were sent to Toronto. This exchange of reports made it possible to
prepare daily synoptic weather charts and paved the way for eventually
placing weather forecasting on a sound scientific basis.
the Meteorological Office at Toronto in 1876 by Mr. R.F. (later Sir Frederic)
Stupart, and the first public weather forecast by Mr. B.C. Webber in 1877.
The drawing of weather charts was an entirely new field and very little was
known about their interpretation. The meteorologist was further handicapped
by the small amount of data with which he had to work. In view of these
limitations, the courage of those pioneer meteorologists is to be admired for
continuing to issue daily weather forecasts in the face of public scepticism
and ridicule.
in the 1880’s and the concurrent extension of the telegraph made it possible
to establish reporting stations from coast to coast. These stations were, of
course, all located along the extreme southern fringe of Canada. The vast
north country was still a blank area on weather maps. Nevertheless, steady
progress was made in the interpretation of the available information and the
Service gradually gained public confidence.
early part of the 20th century is well expressed in an article written in
1912 by R.F. Stupart, the Director of the Meteorological Service: “The maps,
however, valuable as they are, are deficient in many respects, the telegraph
does not yet reach much beyond the southern margin of Canada, and the weather
map shows a vast blank to the northward, and cloud observations showing the
motion of the upper air are fragmentary and unreliable. Forecasts based on
such imperfect information must necessarily be liable to occasional error.”
especially for the study of the great cold waves which are characteristic of
Canadian winters. This need was felt by the United States Weather Office as
well as by Canada. On September 4, 1882, Major-General Haz e n, the Chief
Signal Officer in Washington wrote to Charles Carpmael, who had succeeded
Professor Kingston as Director in 1880, offering United States assistance in
paying the salaries of observers at Fort Chipewyan and Prince Albert. The
financial assistance of the United States was not required in this instance,
(the observer’s allowance at Fort Chipewyan was a modest $60. per annum) but
it is interesting to note that sixty years later during World War II, a
large number of weather stations were established in northern Canada with
United States aid.
along the MacKenzie Valley as far as Herschel Island on the Arctic Ocean.
These stations were valuable inasmuch as they provided climatic data, but the lack of sufficiently rapid communications made it impossible to utilize their
reports in daily forecasting. As further advances were made in the technique
of radio transmission from 1926 on, these stations were equipped with radio,
and for the first time meteorologists were able to draw the daily weather
pattern for northern continental North America on their charts with some
degree of confidence.
of surface observations and the only information available to meteorologists
on the structure and motion of air above the surface was that given by cloud
observations. It was realized that before any major advances could be made in
meteorological knowledge it would be necessary to learn more about physical
processes in the upper atmosphere. A kits station was set up at Agincourt,
near Toronto, to take soundings of the atmosphere by means of recording
instruments carried aloft on kites. This represented a step in the right
direction but there were too many limitations to this method to make it a
practical forecasting aid. If the winds were too light, the kites would not
rise, and if they were too strong, the kites could not stand up against them.
It is interesting to note that the first upper air observations in Canada were
made in the Arctic by Sir Edward Parry, who sent self-registering thermometers
aloft on kites in January 1822 near latitude 66° 11′N, longitude 83° 10′W.
heights by means of free balloons carrying self-recording meteorological
instruments. This method, too, was useful for research purposes only, for it was an obvious requirement that before the record could be used, it had to be
found and shipped to the office of origin. In a country as sparsely populated
as Canada, this usually took several weeks, and often months or even years,
which made their use at isolated stations out of the question. This was
demonstrated during the Second Polar Year Expedition to Fort Rae, N.W.T. in
1932-33, for 27 meteorographs were released but only two were recovered.
upper air data, and flights were begun for this purpose by the Toronto Flying
Club in 1934. Through the cooperation of the R.C.A.F., daily ascents were made
at Fort Smith, N.W.T. during the winter of 1936-37. Ascents were also made at
Edmonton by the Edmonton Flying Club and in Newfoundland by Imperial Airways.
combine the meteorograph with a miniature radio transmitter in such a way that
the radio signals from the instrument could be received at a ground station
and interpreted in terms of pressure, temperature and humidity. This new type
of instrument, called a radiosonde, supplied meteorology with a
sounding the atmosphere at any suitably equipped station in any kind of weather.
The radiosonde soon replaced all the former methods for obtaining upper air
soundings, and by 1950 there were 28 stations in Canada equipped to take
radiosonde flights, of which 8 are in the Arctic and 14 in the sub-Arctic. The
amount of upper air data which is being obtained from the Canadian Arctic and
sub-Arctic is proving extremely useful in current weather forecasting and will
undoubtedly provide a valuable aid to meteorological research.
immediately after the First World War. The speed and direction of winds
aloft were determined by releasing a small balloon, called a pilot balloon,
which was inflated with hydrogen to rise at a known rate and followed visually
with a theodolite. The first pilot balloon station in Canada was established
at Toronto in 1920. By 1950, 69 of the weather stations in Canada were
equipped to take pilot balloon observations.
steady but gradual until the mid-1930’s. At that time it was announced that
a national air service, the Trans-Canada Air Lines, was to be inaugurated
in the very near future. The successful operation of a scheduled air service
depends to a great extent on an accurate knowledge of present weather and weather
trends at a large number of points and the Meteorological Service was not
equipped to provide such a detailed service. It was necessary to expand from
a daytime organization issuing public weather forecasts only, to one operating
on a 24-hour basis with a forecast staff at all the major air terminals. New
observing stations had to be established and the frequency of observations
at many stations had to be increased to hourly intervals. Training courses
were begun immediately and when Trans-Canada Air Lines were ready to undertake
their maiden flight in April 1937, the Meteorological Service was ready to
fill their weather requirements.
necessitated another rapid expansion of the Meteorological Service. The main
requirement at first was for additional staff to act as instructors and forecasters at Air Force operational and training centres. After the United
States entered the war, weather reports were needed from several routes which
were used for the large-scale ferrying of aircraft to various theatres of
operation. The main routes were from Edmonton to Fairbanks, Winnipeg to
Greenland and from Newfoundland to England.
establish a large number of stations in the sub-Arctic and Arctic owing to a
critical shortage of staff and equipment and an agreement was made with the
United States that the new stations which were required would be operated either
entirely by the United States or with United States assistance. The basic
agreement was that Canada would be responsible for operating all installations
which were considered to be an essential part of the general meteorological
system of Canada and that the United States would be permitted to instal and
operate supplementary meteorological facilities for the duration of the war. At
the end of the war most of the stations established by the United States were
closed and the remainder were taken over by Canada as rapidly as staff became
available.
postwar period has been in the Arctic. The increasing interest in Arctic weather
phenomena which was intensified during the war years was crystallized into a
definite blueprint for the establishment of a network of weather stations in the
Canadian Arctic Islands. Canada and the United States made an agreement to
jointly establish and operate a series of Arctic weather stations to be located approximately 500 miles apart in the Canadian Arctic. The first of these
stations was established on Slidre Fiord on Ellesmere Island in April 1947 and
the second on Cornwallis Island in September of the same year. Two more
stations were established in April 1948, one on Prince Patrick Island, and
the other on Ellef Ringnes Island. A fifth station is being established this
year (1950) near the northermost tip of Ellesmere Island.
network of Arctic stations for present meteorological needs. On January 1, 1950, the
Canadian Meteorological Service was receiving weather reports from 1088 stations,
of which 128 are located in the sub-Arctic and Arctic regions. The point has
been reached where an additional increase in the number of reporting stations
in Canada would probably produce no noticeable improvement in weather forecasting.
The main problem facing the Meteorological Service at the present time is to
utilize the data which
methods of forecasting, for it is unfortunately true, as in Stupart’s day, that
forecasts are still “liable to occasional error.”
illustrated in the following table. The number of observing stations in
operation at the end of each Director’s term of office is given. In the case
of the present Controller, the number of stations shown is the number in
operation on January 1, 1950.
Director | Term of office | No. of stations |
Lt. C.J.B. Riddell, R.A. | 1839-1841 | 1 |
Capt. J.H. Lefroy, R.A. | 1841-1853 | 1 |
Prof. J.B. Cherriman, M.A. | 1853-1855 | 1 |
Prof. G.T. Kingston, M.A. | 1855-1880 | 123 |
C. Carpmael, M.A. | 1880-1894 | 285 |
Sir Frederic Stupart, K.B. | 1894-1929 | 835 |
Dr. J. Patterson, O.B.E., M.A., L.L.D. | 1929-1946 | 984 |
A. Thomson, O.B.E., M.A. | 1946- | 1088 |
and sub-Arctic regions was recognized in the earliest days of the Canadian
Meteorological Service, especially when the construction of synoptic weather
charts for forecast purposes was begun in 1872. However, the establishment
of northern stations was a slow process owing to lack of funds, lack of
communications and the relative inaccessibility of these regions.
of population, communications, transportation, climate and mature of terrain
have made it desirable to define the southern boundary of sub-Arctic Canada
as follows:
Saskatchewan to the Manitoba border, then a line through Flin Flon and the
Pas across Manitoba to where the 51st parallel crosses the Manitoba-Ontario
border; thence eastward along the 51st parallel to the Quebec border and from
there to Dolbeau, just north of Lake St. John; from Dolbeau to Caribou Point
and from there along the north shore of the St. Lawrence River through the
Straits of Belle Isle.
Canadian Arctic has been abstracted from the logs of Arctic expeditions. An
important publication which lists the meteorological observations of 36
expeditions during the period 1819-1858 is “Contributions to Our Knowledge of
the Meteorology of the Arctic Regions, Vol. I, H.M. Stationery Office, 1885”.
The length of the individual records varies but usually covers a period of
from one to two years.
systematic program of establishing northern stations by enlisting the aid of
the Hudson’s Bay Company, missionaries and the North-West (later Royal
Canadian) Mounted Police. In July 1873, six cases of instruments were sent
to the Right Reverend Lord Bishop of Rupert’s Land, St. John’s College,
Winnipeg, for distribution to mission stations under his jurisdiction. In
1882, Carpmael made arrangements through the Minister of the Interior for
observations to be taken at all North-West Mounted Police stations.
part of the 20th century, the number of observing stations gradually
increased, with the observations being taken by private individuals and
employees of commercial and mining companies. This expansion was very
noticeable in the Peace River district where a large number of observing
stations were opened up during the period 1910-1935. At many of these
stations instruments were supplied by the Meteorological Service and the
observations were taken without pay. At other stations, a small allowance
was given to the observer, but this was usually less than $100 per annum.
the climate of Labrador prior to 1900 has been obtained from the records kept
at the mission stations which were established along the Labrador coast by the
Moravian Brethren. In 1765, Jens Haven, who had worked among the Greenland
Eskimoes, arrived in Labrador with three Moravian Brethren to do missionary
work. Permission for the project was granted by Commodore Sir High Palliser,
the governor of Newfoundland. In the years which followed, missions were established by the Moravian Brethren at Nain in 1770, Okkak in 1775, Hopedale
in 1781, Hebron in 1829, Zoar in 1865, Ramah in 1871, Makkovik in 1900 and
Killinek in 1904. Zoar, Ramah and Killinek have since been abandoned.
forwarded to Hamburg. Germany, and have been published in the volumes of
“Deutsche Uberseeische Meteoroloigsche Beobachtungen, herausgegeben von der
Deutschen Seewarte”. In 1926, the Meteorological Service of Canada authorized
an allowance to be paid to the Moravian Mission at Nain, and since then the
records from this station have been forwarded directly to the Meteorological
Service.
at various points in the North-West Territories such as Aklavik, Coppermine,
Fort Norman, Fort Simpson and Fort Smith, for example, for the purpose of
gathering and transmitting meteorological data as well and handling commercial
messages. The outbreak of war in 1939 and the corresponding increase in
military flying over Arctic regions necessitated the establishment of additional
northern stations in Canada. This was especially true after the United States
entered the war in 1941. Aircraft were ferried to Alaska, the Aleutians and
the U.S.S.R. by way of northwestern Canada, and to the United Kingdom, Iceland
and Greenland by way of northeastern Canada. Many of these wartime stations
were established and operated either wholly by the United States or with their
assistance.
Canadian Arctic during the numerous voyages of the Canadian Government ice–
breakers C.G.S. Arctic and N.B. McLean, the Hudson’s Bay Company vessel S.S.
Nascopie which foundered off the north coast of Baffin Land in 1947 and the
R.C.M.P. vessel St. Roch. Climatic data and meteorological observations were
also recorded on most of the Canadian Geological Survey expeditions to various
parts of northern Canada. These records are to be found in the Annual Reports
of the Geological Survey of Canada.
meteorological observations are known to have been taken are given in the
following list.
barometer, wet
and rain gauge. At most of these stations complete observations are taken
four times daily at fixed synoptic hours, viz. 0130, 0730, 1330 and 1930 EST.
At the stations designated by “T”, the synoptic reports are immediately
communicated by means of radio and telegraph to the teletype network linking
all forecast offices in Canada.
minimum thermometer and a rain gauge ordinarily, although at a few the
equipment is more extensive.
summer months only.
Station | Class | Lat. °N | Long. °W |
Height in ft. above sea level |
Years of operation |
First Observer |
Remarks |
British Columbia | |||||||
Aiyansh | IIIP | 55°16′ | 129°9′ | 500 | 1924- | M.M. Priestley | |
Anyox | II | 55°27′ | 129°48′ | 370 | 1916-1935 | F.E. Patton | |
Atlin | I | 59°35′ | 133°38′ | 2240 | 1899-1946 | R. Patrick | |
Babine Lake | IIP | 55°8′ | 126°18′ | 2230 | 1910- (b) | F. Durham |
Observations 1910- 1936 at Babine Lake Hatchery. |
Beatton River(A) | IIP | 57°23′ | 121°25′ | 2755 | 1944- | Dept. of Transport | |
Camp Blueberry | I | 56°44′ | 121°47′ | 3094 | 1943-1645 | U.S.A.A.F. | |
Coal River | I | 59°40′ | 127°15′ | 1660 | 1943-1945 | U.S.A.A.F. | |
Dawson Creek | I | 55°45′ | 120°15′ | 2203 | 1943-1945 | U.S.A.A.F. | |
Dease Lake | ITP | 58°25′ | 130°0′ | 2678 | 1943- (b) | U.S.A.A.F. |
Station operated by Dept. of Transport since Oct. 1946. |
Echo Lake | II | 56°56′ | 130°16′ | 3714 | 1924-1926 | A. McKay | |
Engineer | II | 59°30′ | 134°15′ | 2160 | 1925-1929 | C.E. Gilerich | |
Finlay Forks | ITP | 56°0′ | 123°49′ | 1900 | 1943- | U.S.A.A.F. |
Taken over by Domin– ion Gov’t. Telegraph in 1945. |
Fort Nelson(A) | ITP | 58°50′ | 122°35′ | 1230 | 1937- | United Air Lines |
Operated by Dept. of Transport since 1942. Radiosonde station. |
Station | Class | Lat. °N | Long.°W |
Height in ft. above sea level |
Years of operation |
First Observer |
Remarks |
British Columbia Cont’d | |||||||
Fort St. John (Baldonnel) |
IIP | 56°12′ | 120°49′ | 2500 | 1910- | c. c. Campbell |
Observations also taken a few miles away by Dr. H.A.W. Brown from 1933-1945. |
Fort St. John (A) | ITP | 56°14′ | 120°44′ | 2275 | 1942- | Dept. of Transport | |
Hudson Hope | I | 56°5′ | 121°55′ | 1606 | 1916-1944 | F. Monteith | |
Ingenika Mine | II | 56°45′ | 125°0′ | 2500 | 1932-1939 | E. Buchann | |
Log Cabin | I | 59°46′ | 134°59′ | 2900 | 1943-1947 | U.S.A.A.F. |
Operated by Canada after Feb. 1946. |
Lower Post | I | 59°57′ | 128°39′ | 1830 | 1937-1938 | United Air Lines |
Observing station transferred to Watson Lake in 1938. |
McDames Creek | II | 59°12′ | 119°12′ | ---- | 1937-1941 |
B.C. Provincial Police |
|
Mill Bay | IIP | 55°0′ | 129°45′ | 10 | 1915- | W.D. Noble | |
Morley River | I | 59°53′ | 131°46′ | ---- | 1945 | U.S.A.A.F. | |
Muncho Lake | I | 58°55′ | 125°46′ | 2724 | 1943-1945 | U.S.A.A.F. | |
New Hazelton | IIP | 55°15′ | 127°35′ | 1150 | 1914- | W.J. Larkworthy | |
Pouce Coupe | II | 55°43′ | 120°8′ | 2000 | 1926-1939 | A. Chalmers | |
Premier | IIP | 56°3′ | 130°1′ | 1371 | 1926- | W.H. Pettman | |
Progress | II | 55°50′ | 120°10′ | 2800 | 1942-1948 | H. Bentley |
Rolla | II | 55°41′ | 120°21′ | 2400 | 1920-1924 | E.S. Jephson | |
Silver Creek (Oninica) |
II | 55°30′ | 126°0′ | ---- | 1943-1945 | Takla Mercury Mines | |
Slate Creek | II | 55°45′ | 124°45′ | 3200 | 1936-1938 | W. Ogilvie | |
Smith River (A) | ITP | 59°52′ | 126°30′ | 2208 | 1944- | Dept. of Transport | |
Stewart | IIP | 56°1′ | 130°1′ | 4 | 1910 | W. H. Manton | |
Summit Lake | I | 58°39′ | 124°38′ | 4146 | 1943-1945 | U.S.A.A.F. | |
Sweetwater | III | 55°52′ | 120°30′ | 2600 | 1933-1946 | W.S. Simpson | |
Takla Landing | I | 55°29′ | 125°58′ | 2273 | 1943-1945 | U.S.A.A.F. | |
Telegraph Creek | I | 57°54′ | 131°9′ | 550 | 1942-1948 | Dept. of Transport |
Some Observations taken 1924-1928 by F.N. Jackson. |
Trout Liard | I | 59°31′ | 126°2′ | 1388 | 1943-1945 | U.S.A.A.F. | |
Trutch | IIP | 57°48′ | 122°54′ | 2813 | 1943- (b) | U.S.A.A.F. |
U.S.A.A.F. withdrew 1945. Re-opened by Canada Sept. 1948. |
YUKON | |||||||
Aishihik(A) | ITP | 61°37′ | 137°31′ | 3170 | 1943- | Dept. of Transport | |
Brooks Brook | I | 60°30′ | 133°23′ | 2365 | 1943-1945 | U.S.A.A.F. | |
Canyon Creek | I | 60°52′ | 137°8′ | 2130 | 1943-1946 | U.S.A.A.F. | |
Carcross | IIP | 60°11′ | 134°34′ | 2171 | 1907- | P Reid. |
Station closed 1948-1949. |
Dawson | ITP | 64°4′ | 139°29′ | 1062 | 1897- |
W. Ogilvie, Commissioner of the Territory |
Radio station established in 1925 and observations taken over by Royal Can. Crops of Signals |
Davils Pass | I | 60°31′ | 134°10′ | 2220 | 1943-1944 | U.S.A.A.F. | |
Elsa | IIP | 64° | 135°30′(a) | ---- | 1948- | Keno Hill Mining Co.. | |
Fish Lake | I | 60°10′ | 132°3′ | 2845 | 1943-1945 | U.S.A.A.F. | |
Flight Strip#6(A) | I | 60°40′ | 113°28′ | 2770 | 1945 | U.S.A.A.F. | |
Flight Strip#8(A) | I | 61°25′ | 139°7′ | 2575 | 1944-1945 | U.S.A.A.F. | |
Fort Constantine | II | 64°0′ | 140°0′ | ---- | 1895-1897 | N.W.M.P. | |
Forty Mile | II | 64°30′ | 140°30′ | 1000 | 1937-1928 | J.E. Ellis | |
Frances Lake | IIP | 61°17′ | 129°24′ | 2425 | 1941- | Hudson’s Bay Co. |
Pressure observations available for part of period. |
Kluane Lake | II | 60°56′ | 138°20′ | ---- | 1946 | H.J. Brooks | |
Mayo | ITP | 63°35′ | 135°51′ | 1625 | 1925- |
Royal Can. Corps of Signals |
|
Orchie Lake | I | 62°10′ | 131°45′ | ---- | 1944-1945 | U.S.A.A.F. | |
Pine Creek | IIP | 60°50′ | 137°33′ | 2030 | 1944- |
Dom. Experimental Sub-Station |
|
Rampart House | II | 67°30′ | 134°30′ | ---- | 1874-1879 | J. McDougal, H.B.Co. |
Observations discon– tinued when McDougall Moved to Dunvegan. |
Rancheria | I | 60°5′ | 130°10′ | 2770 | 1943-1945 | U.S.A.A.F. | |
Ross River | I | 62°2′ | 132°25′ | 2316 | 1943-1944 | U.S.A.A.F. | |
Selkirk | IIP | 62°46′ | 137°25′ | ---- | 1941- | Dom. Govt. Telegraph |
Some observations by N.W.M. Police 1898- 1899. |
Sang(A) | ITP | 62°22′ | 140°24′ | 1925 | 1943- | Dept. of Transport |
Lowest temperature in North America, −81.4°F, recorded here on Feb. 3, 1947. |
Stewart River | IIP | 63°20′ | 139°25′ | ---- | 1941- |
Dom. Govt. Telegraph |
Visual airways observations only. |
Swede Creek | II | 64°6′ | 139°45′ | 1050 | 1919-1929 | J.R. Farr | |
Swift River | I | 60°0′ | 131°5′ | 3415 | 1943-1946 | U.S.A.A.F. | |
Tagish Lake | II | 60°17′ | 134°15′ | ---- | 1898-1900 | N.W.M. Police | |
Teslin(A) | ITP | 60°10′ | 132°44′ | 2300 | 1943- | Dept. of Transport | |
Victoria Gulch | III | 62°0′ | 137°10′(a) | ---- | 1905-1906 | P. Holloway | |
Watson Lake(A) | ITP | 60°7′ | 128°48′ | 2248 | 1939- | Dept. of Transport | |
Whitehorse | II | 60°45′ | 135°0′ | 2075 | 1900-1911(b) | E.D. Bolton | |
Whitehorse(A) | ITFP | 60°43′ | 135°5′ | 2289 | 1940- | Dept. of Transport | Radiosonde station. |
NORTH WEST TERRITORIES | |||||||
Aklavik | ITP | 68°14′ | 134°50′ | 25 | 1926- | R.C.C.S. | Radiosonde station. |
Arctic Bay | ITP | 73°0′ | 85°18′ | 36 | 1937- | H.B. Co. |
Radiosonde station. Operated by Dept. of Transport after 1945. Observation taken 1910-11 when Capt. Bernier’s expedition wintered there. |
Ashe Inlet | I | 62°33′ | 70°35′ | 100 | 1844-1886 | W.A. Ashe |
Observing station during Dom. Govt. expedition to Hudson Bay & Strait, 1884-1886. |
Bache Peninsula | I | 79°10′ | 76°45′ | 10 | 1930-1933 | R.C.M. Police | |
Baker Lake | ITP | 64°18′ | 96°5′ | 30 | 1946- | R.C.C.S. | Radiosonde station. |
Cambridge Bay | ITP | 69°7′ | 105°1′ | 45 | 1935- | Rev. R. Thomas |
Observations taken in 1852-1853 by expedition commanded by Capt. Richard Collinson in the “Enterprise ” ” and in 1927-1928 by officers of C.G.S. “Baymaud”. |
Camsell River | II | 63°30′ | 112°0′ | -- | 1933-1934 | W.G. Stuart | |
Cape Dorset | II | 64°15′ | 76°25′ | 40 | 1915-1927(b) | S.J. Stewart | |
Chesterfield Inlet | ITP | 63°20′ | 90°43′ | 13 | 1921- |
Rev. Father R.T.A. Turquetel, R.C. Mission. |
Marine radio station established in Sept. 1930. One of Canadian bases during Second International Polar Year, 1932-1933 |
Clyde River | ITP | 70°25′ | 68°17′ | 26 | 1943- | U.S.A.A.F. |
Observations by J.G. Cormack of H.B. Co. 1933-1935. Radiosonde station. Operating taken over by Canada in 1948. |
Coppermine | ITP | 67°47′ | 115°15′ | 13 | 1930- | R.C.C.S. |
Radiosonde station. One of Canadian bases during Second Inter– national Polar Year, 1932-1933. |
Coral Harbour(A) | ITP | 64°11′ | 83°17′ | 193 | 1943- | U.S.A.A.F. |
Taken over by Canada in 1945. Radiosonde station. Observa– tions taken 1933- 1935 by H.P. Dionne H.B. [ ] |
Craig Harbour | I | 76°12′ | 79°35′ | 12 | 1922-1939 (b) | R.C.M. Police |
Post abandoned in 1939. |
Dundas Harbour | IP | 74°34′ | 82°10′ | 18 | 1945- | R.C.M. Police |
Observations by R.C.M.P. 1930-1933. |
Ennadal Lake | ITP | 61°8′ | 100°55′ | 875 | 1949- | R.C.C.S. | |
Eskimo Point | I | 61°7′ | 94°3′ | 25 | 1943-1945 | U.S.A.A.F. | |
Eureka | ITP | 80°13′ | 86°11′ | 8 | 1947- |
Dept. of Transport and U.S. Weather Bureau |
Radiosonde station. Operated jointly by U.S. and Canada. |
Fort Franklin | III | 65°20′ | 123°0′ | 500 | 1930 only | ------- |
Winter quarters of Sir John Franklin’s land expedition 1825-1826. |
Fort Good Hope | IIP | 66°15′ | 128°38′ | 214 | 1896- (b) |
Rev. P. Seguin, R.C. Mission de Norte Dame de Bonne Esperance. |
Instruments moved to Fort Norman in 1904, returned in 1908. |
Fort Good Hope | ITP | 66°15′ | 128°38′ | 251 | 1944- | R.C.C.S. | |
Fort Liard | II | 66°30′ | 124°0'(a) | 500 | 1892-1893 |
Rev. T.J. Marsh, Anglican Mission |
Rev. Marsh moved to Hay River in 1893 and took instruments with him. |
Fort McPherson | IIP | 67°26′ | 134°53′ | 150 | 1892- |
Rev. J.O. Stringer and Count V.E. de Sainville. |
Rev. Stringer trans– ferred to Herschel Island in 1897. |
Fort Norman | ITP | 64°54′ | 125°30′ | 300 | 1904- |
Rev. G. Houssais, R.C. Mission |
Instruments brought from Fort Good Hope in 1904. Radio station established in 1930 and observa– tions taken over by R.C.C.S. |
Fort Rae | I | 62°40′ | 115°45′ | 540 | 1875-1886 (b) | A. Flett, H.B. Co. |
Instruments taken up by Bishop of McKenzie River in 1875. Joint British– Canadian station during first Interna– tional Polar Year 1882-1883, and base for British axpedi– tion during Second International Polar Year 1932-1933. Some observations taken 1934-1936 by R.A. Ingrey. |
Fort Reliance | ITP | 62°43′ | 109°6′ | 515 | 1948- | R.C.C.S. | |
Fort Resolution(A) | ITP | 61°10′ | 113°41′ | 519 | 1875- (b) | R. Swanston |
Records incomplete from 1875-1912. Observations taken at R.C. Mission until 1930. Radio station established in 1930 and observations taken over by R.C.C.S. Airport opened March 1943. |
Fort Ross | I | 71°55′ | 94°15′ | 50 | 1937-1948 (b) | H.B. Co. |
Personnel evacuated in Nov. 1943, when supply ship unable to reach Fort Ross during 1942 and 1943. Station re-opened Oct. 1944 and closed in March 1948. |
Fort Simpson | ITP | 61°52′ | 121°21′ | 415 | 1875- (b) |
Rev. A.C. Carrioch, St. David’s Mission |
Records incomplete from 1875-1894. Barometer and other |
instruments left here by V. Stefansson in 1908. Radio station established in 1924 and observations begun by RCCS. Obser– vations at mission discontinued in 1927. |
|||||||
Fort Simpson(A) | I | 61°52′ | 121°13′ | 572 | 1943-1946 |
USAAF and Dept. of Transport |
USAAF withdrew in 1945. |
Fort Smith | I | 60°0′ | 111°52′ | 680 | 1911-1946 | A.J. Bell |
Observations taken at RCCS radio station after 1928 |
Fort Smith(A) | ITP | 60°1′ | 111°58′ | 665 | 1943- |
USAAF and Dept. of Transport |
Radiosonde station. USAAF withdrew in 1945. |
Hay River | I | 60°50′ | 115°32′ | 529 | 1893-1943 |
Rev. T.J. Marsh, Anglican Mission |
Mission station discontinued when observations begun at Hay River airport in 1943. |
Hay River(A) | ITP | 60°53′ | 115°46′ | 529 | 1943- | U.S.A.A.F. |
Station taken over by RCCS in 1945. |
Herschel Island | II | 69°30′ | 139°15′ | 15 | 1896-1928 (b) | Capt. G. Leavitt |
Observations taken over by Anglican Mission 1897-1906 when mission was closed and instru– ments were left in charge of N.W.M. Police. No records received from 1906- 1916. Broken series of observations taken by Cecillia Harding from 1916- 1928. |
Holman Island | ITP | 70°30′ | 117°38′ | 30 | 1939- |
W.L.T. Smith of H.B. Co. |
Station transferred here from Walker Bay. |
Indin Lake | ITP | 64°16′ | 115°14′ | 900 | 1948- |
Trans-American Mining Corporation |
|
Isachsen | ITP | 78°47′ | 103°32′ | 83 | 1948- |
Dept. of Transport and U.S. Weather Bureau |
Station operated jointly by U.S. and Canada. Established by airlift from Resolute in April, 1948. Radiosonde station. |
Kazan River | I | 61°34′ | 100°40′ | 800 | 1945-1946 | R.C.A.F. | |
Kittigazuit | ITP | 69°17′ | 133°56′ | 92 | 1948- | R.C.A.F | |
Lake Harbour | I | 62°50′ | 69°55′ | 54 | 1909-1948 |
Archbishop L. Fleming, Anglican Mission. |
|
Mills Lake | I | 61°16′ | 118°45′ | 484 | 1943-1944 | U.S.A.A.F. | |
Mould Bay | ITP | 76°14′ | 119°50′ | 50 | 1948- |
Dept. of Transport and U.S.A.A.F. |
Operated jointly by Canada and U.S. Established by air– life from Resolute in April, 1948. Radiosonde station. |
Norman Wells | I | 65°18′ | 126°51′ | 270 | 1946-1949 | Dept. of Transport | |
Norman Wells(A) | ITP | 65°17′ | 126°49′ | 270 | 1949- | Dept. of Transport |
Observing station maintained here by USAAF from 1943-1946. |
Nottingham Island | ITP | 63°7′ | 77°56′ | 54 | 1927- |
Dept. of Transport, Marine Radio station |
Nueltin Lake | I | 60°30′ | 99°0′ | --- | 1939-1941 | J.A. Crafford |
Some observations in 1945 by RCAF survey party. |
Padloping Island | IP | 67°6′ | 62°21′ | 130 | 1941- (b) | U.S.A.A.E. |
Continuation of this station recommended by I.C.A.O. |
Pangnirtung | IP | 66°9′ | 65°30′ | 43 | 1923- | R.C.M. Police | |
Pond Inlet | IP | 72°43′ | 78°30′ | 13 | 1923- (b) | R.C.M. Police | |
Port de Boucherville |
I | 63°12′ | 77°28′ | -- | 1884-1886 | C. de Boucherville |
Observing station maintained during Hudson Straits expedition, 1884- 1886. |
Port Laperriere | I | 62°35′ | 78°1′ | -- | 1884-1886 | A.M. Laperriere |
Observing station on Digges Island during Hudson Straits expedition 1884-1886. |
Port Radium | ITP | 66°5′ | 11°82′ | 600 | 1937- (b) | R.C.C.S. |
Station closed 1940-1942. |
Providence(A) | ITP | 61°20′ | 117°40′ | 529 | 1943- | U.S.A.A.F. |
Station taken over by R.C.C.S. in 1945. |
Resolute | ITP | 74°41′ | 94°55′ | 56 | 1947- |
Dept. of Transport and U.S. Weather Bureau |
Station operated jointly by Canada and U.S. Radiosonde station. |
Resolution Island | ITP | 61°18′ | 64°53′ | 127 | 1929- |
Dept. of Transport Marine Radio station |
Station moved here from Port Burwell. |
Sawmill E(A) | I | 65°44′ | 118°55′ | --- | 1948-1949 | R.C.A.F. |
Snare River | II | 63°30′ | 116°0′ | 600 | 1947-1948 |
R. Coutts and B.F. Russell |
|
Trout Lake | I | 60°45′ | 121°30′ | 1650 | 1944-1945 | U.S.A.A.F. | |
Tuktoyaktuk | IIP | 69°30′ | 133°0′ (a) | --- | 1948- | Anglican Mission | |
Upper Frobisher(A) | ITP | 63°44′ | 68°33′ | 68 | 1942- | U.S.A.A.F. |
Radiosonde station. Operation to be taken over by Canada in 1950. |
Walker Bay | I | 71°30′ | 117°50′ | 27 | 1938-1939 | H.B. Co. |
Station transferred to Holman Island in 1939. |
Wrigley(A) | ITP | 63°13′ | 123°28′ | 511 | 1947- | R.C.C.S. |
Observing station operated by USAAF 1943-1946. |
Yellowknife | II | 62°28′ | 114°20′ | 515 | 1941-1942 | A.L. Arsenault |
Observations taken at Con Mine. |
Yellowknife | IIP | 63°14′ | 114°25′ | --- | 1943- | Yellowknife Hydro | |
Yellowknife(A) | ITP | 62°28′ | 114°27′ | 656 | 1942 |
R.C.C.S. and Dept. of Transport |
|
ALBERTA | |||||||
Beaverlodge | ITP | 55°10′ | 119°19′ | 2500 | 1926- | Experimental Farm | |
Berwyn (Bear Lake) | IIP | 56°10′ | 117°47′ | 2000 | 1934- (b) | H. L. Dundas |
Station closed 1940- 1949. |
Buffalo Head Prairie |
IIP | 58°10′ | 116°20′ | 950 | 1932- | T.R. Smith | |
Daysland | II | 55°52′ | 112°17′ | 2260 | 1908-19 2 2 | D. Davidson |
(Fort ) Dunvegan | II | 55°56′ | 118°35′ | 1305 | 1880-1943(b) |
J. McDougall, H.B. Co. |
Station closed in 1888 and instruments for– warded to Fort Vermil– lion. Reopened in 1904 |
Edson | II | 55°33′ | 116°25′ | 2985 | 1916-1940(b) | D.H. Felker | |
Elmworth | II | 55°4′ | 119°40′ | 2450 | 1926- | G.S. Moyer | |
Embarrass(A) | ITP | 58°12′ | 111°23′ | 775 | 1943- | U.S.A.A.F. |
Taken over by Canada in 1945. |
Fairview | ITP | 56°4′ | 118°23′ | 2160 | 1931- | J.G. Bryden | |
Fort Chipewyan | I | 58°43′ | 111°9′ | 714 | 1874-1940 |
A. MacFarlane H.B. Co. |
Observations irregular 1874-1886. In 1885, instruments received from Fort Rae which had been left by First Intern. Polar Year Expedition and observa– tions begun by Archdaecon W.D. Reeve of Anglican Mission. |
Fort McMurray | I | 56°44′ | 111°23′ | 829 | 1908-1944 | W. Gordon |
Radio station esta– blished in 1934 and observations taken over by RCCS. |
Fort Vermilion | IIP | 58°23′ | 116°3′ | 950 | 1905- |
Rev. A.S. White
,
Anglican Mission |
Instruments received from Dunvegan in 1889, but the prospective observer declined to serve without pay and station not opened until 1905. Observa– tions taken at Experimental Farm since 1908 and mission station discontinued in 1919. |
Goodfare | II | 55°16′ | 119°42′ | 2700 | 1929-1933 | V.J. Young | |
Goodwin (De Bolt) | II | 55°11′ | 118°12′ | 1600 | 1931-1937 (b) | J. P. Grant | |
Grande Prairie (A) | ITP | 55°10′ | 118°53′ | 2190 | 1922- (b) | W. H. Pearson |
Station closed in 1937 and reopened by Dept. of Transport in 1942. |
Grimshaw | II | 56°12′ | 112°36′ | 2001 | 1945-1949 | C.W. Purcell | |
Gronard | II | 55°35′ | 116°9′ | 1900 | 1884-1945 (b) |
W.E. Traill, H.B. Co. |
Incomplete records 1884-1896 and no records 1896-1909. |
High Prairie | IIP | 55°28′ | 116°30′ | 1968 | 1926- | S. Harris | |
Keg River | ITP | 57°47′ | 117°50′ | 1402 | 1935- |
Dom. Govt. Telegraph |
|
Kinuso | II | 55°20′ | 115°26′ | 1928 | 1927-1948 | Mrs. W.L. McKillop | |
McMurray(A) | ITP | 56°39′ | 111°13′ | 1216 | 1943- | USAAF |
Taken over by Dept. of Transport in Dec. 1944. |
Peace River(A) | ITP | 56°14′ | 117°26′ | 1820 | 1949- | C.P. Airlines |
Observations taken 1944- 1945 by USAAF. |
Peace River Crossing | II | 56°15′ | 117°15′ | 1225 | 1907-1936 | H.A. George |
Irregular observations taken for few years after 1882 by Rev. J.G. Brink of Christ Church Mission. |
Puskwaskau | IIImP | 55°28′ | 118°3′ | 2000 | 1944- |
Alberta Forest Service |
|
Rycroft (Silverwood) |
II | 55°46′ | 118°45′ | 1983 | 1931-1937 | F.V. Platzer |
Sasakatoon Mountain | IIImP | 55°15′ | 119°21′ | ---- | 1942- |
Alberta Forest Service |
|
Shaftesbury | II | 56°6′ | 117°45′ | ---- | 1907-1908 | Miss L. Millen | |
Slave Lake (Sawridge) |
IIP | 55°20′ | 114°49′ | 1905 | 1926- |
Alberta Forest Service |
|
South Beaver Lodge | II | 55°20′ | 119°24′ | 1400 | 1927-1930 | V.C. Flint | |
Spirit River | II | 55°40′ | 118°47′ | ---- | 1910-1911 | A.M. Josse | |
Valleyview | I | 55°5′ | 117°15′ | 2419 | 1944-1945 | USAAF | |
Wabasca | II | 56°2′ | 113°0′ | 1720 | 1934-1947 |
St. John’s Indian Res. School |
|
Wagner(A) | ITP | 55°21′ | 114°59′ | 1915 | 1943- | USAAF |
Taken over by Dept. of Transport in Jan. 1946. |
Wembley | II | 55°9′ | 119°8′ | 2400 | 1926-1932 | B.J. Smith | |
SASKATCHEWAN | |||||||
Beaver River (Ile a la Crosse) |
II | 55°26′ | 107°44′ | ---- | 1929-1941 | J.C. Taylor | |
Fond du Lac | II | 59°20′ | 107°10′ | 700 | 1905-1938 | Rev. A. Beihler |
Instruments received from Fort Chipewyan in 1905. |
Island Falls | ITP | 55°32′ | 102°21′ | 982 | 1929- |
Churchill River Power Co. |
Observations taken by USAAF 1943-1945 and by Island Falls Community Club after 1945. |
Island Falls(2) | IIP | 55°35′ | 102°26′ | ---- | 1938- |
Churchill River Power Co. |
Station located on Churchill River, 13 miles from town of Island Falls. |
Island Falls(3) | II | 55°34′ | 102°47′ | ---- | 1938-1944 |
Churchill River Power Co. |
Station located on Churchill River 38 miles from town of Island Falls. |
Lac la Ronge | II | 55°8′ | 105°23′ | 1250 | 1921-1942(b) | A. McKay | |
Pelican Narrows | II | 55°8′ | 102°54′ | ---- | 1929-1930 |
District Forest Inspector |
|
Stanley Mission | II | 56°0′ | 105°0′ | ---- | 1910-1940(b) | Rev. J. Brown |
Met. Service shipped instruments here in 1877 but no records received until 1910. |
Whitesand (Rocky Falls) |
IIP | 56°20′ | 103°15′ | ---- | 1938- |
Churchill River Power Co. |
|
MANITOBA | |||||||
Berens River | IIP | 5 2 °18′ | 97°2′ | 720 | 1890- |
H.E. Plunkett, H.B. Co. |
F.A. Disbrowe, H.B. Co. post manager took the observations from 1908 until his death in 1943. |
Brochet | ITP | 57°53′ | 101°40′ | 1180 | 1948- | RCCS | |
(Fort) Churchill | ITP | 58°47' | 94°11′ | 44 | 1884- |
J.R. Spencer, H.B. Co. |
Marine Radio station opened 1928 and took over observations. Danish expedition commanded by Jens Munck wintered here 1619-1620 . Harbour rediscovered by Capt. Luke Fox e in 1631. H.B. Co., built trading post in 1715. |
Churchill(A) | ITP | 58°45′ | 94°5′ | 115 | 1943- | USAAF |
Taken over by Dept. of Transport in 1945. Radiosonde station. |
Duck Lake | I | 59°30′ | 97°30′ | 890 | 1943-1946 | USAAF | |
Flin Flon | ITP | 54°45′ | 101°49′ | 1025 | 1927- |
Hudson Bay Mining and Smelting Co. |
|
Gillam | ITP | 56°21′ | 94°46′ | 454 | 1943- | USAAF |
Taken over by Dept. of Transport in July 1945. |
God’s Lake | I | 54°50′ | 94°50′ | 610 | 1933-1944 | Canadian Airways | |
Herb Lake | II | 54°45′ | 99°30′ | 800 | 1924-1927 | F.W. Robinson | |
Hillview | II | 59°55′ | 100°33′ | 1400 | 1912-1921 | H. Stevenson | |
Little Grand Rapids | I | 51°35′ | 95°15′ | 998 | 1939-1944 | R. Finch | |
Nelson House | II | 55°49′ | 98°57′ | ---- | 1937-1939 | H. Thiboutot | |
Norway House | I | 53°59′ | 97°50′ | 720 | 1884-1945(b) |
J.G. Christie, H.B. Co. |
|
Oxford House | II | 54°55′ | 96°28′ | 350 | ----- | ----- |
Abstract of early H.B. Co. temperature records given in Influence of Climate by J. Disturnell, 1866. |
Pakitawagan | II | 55°50′ | 101°40′ | ---- | 1924-1926 |
Rev, J.T.A. Renaud |
|
Poplar River Post | II | 52°58′ | 97°20′ (a) | ---- | 1888-1889 | H.B. Co. | |
Port Nelson | I | 57°0′ | 92°51′ | 49 | 1915-1929 |
A Sutherland H.B. Co. |
Observing station trans– ferred here from York Factory in 1915. |
Split Lake | II | 56°11′ | 96°11′ | ---- | 1911-1913 | C.A. Fox | ||
The Pas | ITP | 53°49′ | 101°15′ | 890 | 1910- | G. Halcrow | ||
The Pas(A) | ITP | 53°58′ | 101°6′ | 894 | 1943- | USSAF |
Taken over by Dept. of Transport in Sept. 1945. Radiosonde station. |
|
Wabowden | ITP | 54°54′ | 98°28′ | 764 | 1943- | USAAF |
Taken over by Dept. of Transport in Oct. 1945. |
|
Wanless | IIP | 54°11′ | 101°22′ | 855 | 1935- | R. W. Allen | ||
York Factory | I | 57°0′ | 92°26′ | 85 | 1772-1915(b) |
T. Hutchins H.B. Co. |
Observations taken by T. Hutchins of H.B. Co. 1772-1773. Observa– tions taken by H.B. Co. 1842-1854, 1864-1868 and 1876-1883 are summarized in Report of the Hudson’s Bay Expedi– tion 1884-1886 by A.R. Gordon. Observing station transferred to Port Nelson in 1915. |
|
ONTARIO | ||||||||
Fort Albany | II | 52°12′ | 82°5′ | ----- | 1878-1881 | H.B. Co. |
Returns received via Moose Factory. |
|
Fort Hope | II | 51°33′ | 87°49′ | 1100 | 1891-1924(b) |
D. Baxter, H.B. Co. |
All instruments burned in 1893 and station closed until 1900. |
|
Lansdowne House | ITP | 52°14′ | 88°0′ | 840 | 19 4 1- | H.B. Co. |
Observations taken over by Dept. of Transport in 1945. |
Marten’s Falls | II | 51°30′ | 86°30′ | ---- | 1894-1900 |
J.G. Christie, H.B. Co. |
Christie moved to Fort Hope in 1900 and took instruments there. Some observations taken in 1878-1880 by J. Clark, of H.B. Co. |
Moose Factory | I | 51°14′ | 80°30′ | 29 | 1877-1938(b) |
J.R. Nason, H.B. Co. |
Station closed in 1938 since observations were being taken in town of Moosonee. |
Moosonee | ITP | 51°16′ | 80°39′ | 34 | 1932- |
Proprietor of James Bay Inn. |
Radiosonde station. |
Pickle Lake | ITP | 51°28′ | 90°15′ | 1245 | 1938- | C.P. Airlines |
Observations taken for two months in 1930 by F. Stapleton. |
Rat Rapids | IIP | 51°8′ | 90°1′ | 1180 | 1934- |
Hydro-Electric Power Commission. |
|
Red Lake | ITP | 51°2′ | 93°50′ | 1250 | 1938- | C.P. Airlines |
Some observations taken in 1930 by A.E. Crump. |
Swains Lake | II | 51°17′ | 93°20′ | 1298 | 1933-34 | R.E. Wright | |
Trout Lake | ITP | 53°50′ | 89°52′ | 720 | 1915- (b) |
John Gregg, H.B. Co. |
Station closed 1930- 1939. H.B. Co. re– summed observations in 1939 and Dept. of Transport took them over in 1945. |
Woman Lake | II | 51°11′ | 92°51′ | 1282 | 1934-1937 | L.E. Nelson |
Instruments transferred from Swains Lake in 1934. |
QUEBEC | |||||||
Clarke City | I | 50°12′ | 66°38′ | 186 | 1902-1947 | F.N. Ritchie | |
Dolbeau | I | 48°48′ | 72°20′ | 413 | 1930-1938 | J.E. Morin | |
Fort Chimo(A) | ITP | 58°5′ | 68°25′ | 112 | 1882- (b) |
L.M. Turner, Smithsonian Inst. |
Observations taken irregularly by H.B. Co., employees 1885-1941. USAAF operated observ– ing station from 1942 on. To be taken over by Dept. of Transport in 1950. Radiosonde station. |
Fort George | IIP | 53°50′ | 79°5′ | 320 | 1915- (b) | O. Griffith | Station closed 1944-48. |
Fort McKenzie | ITP | 56°63′ | 69°3′ | 250 | 1938- |
J.A. Heslop, H.B. Co. |
Station taken over by Dept. of Transport in 1942. |
Great Whale River | ITP | 55°17′ | 77°46′ | 50 | 1925- (b) |
L.G. Maver, H.B. Co. |
Some observations taken in 1881 by H.B. Co. received via Moose Factory. Observations 1888-1889 by G.A. Young on Yacht Alle. Station closed 1945- 1946. |
Greenly Island | II | 51°22′ | 57°12′ | --- | 1882-1889 | ------ |
Sundial taken in by Stupart in 1883. |
Harrington Harbour | ITP | 50°32′ | 59°30′ | 25 | 1911- | Miss Maud Cox |
Observations at Gren– fell Mission 1936- 1944. Taken over by Dept. of Transport in 1944. |
(Cape) Hope’s Advance |
ITP | 61°5′ | 69°33′ | 240 | 1928- (b) |
Dept. of Transport, Marine Radio |
Station operated summers only from 1934-1940; closed 1940-1942. One of Canadian bases during Second International Polar Year. Wind of 132 mph recorded in Dec. 1931. |
Indian House Lake | ITP | 56°2′ | 64°44′ | 1044 |
1944-
|
U.S.A.A.F. |
Taken over by Dept. of Transport in 1948. Continuation of this station recommended by ICAO. Station closed 1946-7. |
Knob Lake | ITP | 54°49′ | 66°41′ | 1550 | 1948- |
Hollinger Mining Co. |
|
Lake Dore (Chibougamau) |
ITP | 49°54′ | 74°18′ | 1234 | 1936- |
Obalski Mining Corp. |
|
Lake Manuan | ITP | 50°38′ | 70°32′ | 1625 | 1942- |
Aluminum Co. of Canada |
|
Lake Norman | I | 52°0′ | 63°20′ | 1520 | 1942-1945 | Quebec Airways | |
Lake Onistagan | II | 50°45′ | 71°25′ | ---- | 1944-1945 | A. Robert | |
Mecatina (Morhiban) |
ITP | 51°50′ | 62°53′ | 1720 | 1943- (b) | USAAF |
USAAF evacuated in 1946. Reopened by Dept. of Transport in 1948. |
Mingan(A) | ITP | 50°17′ | 64°9′ | 76 | 1943- | USAAF |
To be taken over by Dept. of Transport in 1950. Radiosonde equipment from Mingan to be transferred to Seven Islands in 1950. |
Mistassini Post | IIP | 50°30′ | 73°55′ | 1255 | 1879- (b) | H.B. Co. |
Observations irregular from 1879-1915. |
Natashquan | ITP | 50°12′ | 61°49′ | 18 | 1914- |
Rev. Father L. Garnier |
A storm signal station was established here in 1907. |
Nitchequon | ITP | 53°12′ | 70°35′ | 1690 | 1942- |
Dept. of Transport |
Radiosonde station. |
Passe
|
IIP | 49°53′ | 71°16′ | ---- | 1942- |
Aluminum Co. of Canada |
|
Pentecote | II | 49°47′ | 67°9′ | ---- | 1936-1938 | B. Fleming | |
Piaster Bay | II | 50°17′ | 62°49′ | ---- | 1892 | E. Werner | |
Port Burwell | I | 60°25′ | 64°51′ | ---- | 1884-1934(b) | H.M. Burwell |
Observing station during Hudson Bay Expedition 1884-1886. Observations begun by RCM Police in 1929. Eskimo settlement called Killinek nearby. Settlement unoccupied since 1940. |
Port Harrison | ITP | 58°27′ | 78°8′ | 66 | 1921 | L.A. Learmonth |
Some observations during 1901 by G.A. Young on Yacht Alle. Radiosonde station. |
Seven Islands(A) | ITP | 50°13′ | 66°16′ | 190 | 1944- |
Dept. of Transport |
|
Stupart’s Bay | I | 61°35′ | 71°32′ | ---- | 1884-1886 | R.F. Stupart |
Observing station during Hudson Bay expedition 1884-1886. |
Tabouret | II | 50°18′ | 68°34′ | 2000 | 1937 | L. Vaillencourt | |
Wakeham Bay | I | 61°42′ | 71°58′ | ---- | 1927-1928 |
Dept. of Trans– port Marine Radio |
Station moved to Hope’s |
LABRADOR | |||||||
Amour Point (Forteau) |
I | 51°28′ | 56°51′ | 40 | 1876-1936 | P. Godier | Lighthouse station. |
Ashuanipi | ITP | 52°32′ | 66°14′ | 1790 | 1948- |
Hollinger Mining Co. |
|
Battle Harbour | IIP | 52°17′ | 55°25′ | 30 | 1893- (b) | Dr. Babardt |
Station closed in 1900 and instruments sent to North-West River. Reopened 1947. |
Bello Isle | ITP | 51°53′ | 55°22′ | 426 | 1871- | M. Colton | Lighthouse station. |
Cape Harrison | ITP | 54°44′ | 58°19′ | 65 | 1943- | USAAF | |
Cartwright | ITP | 53°42′ | 57°0′ | 34 | 1934- | Can. Marconi Co. | |
Davis Inlet | II | 55°52′ | 60°50′ | -- | 1902 |
S. Cotter, H.B. Co. |
|
Goose (Bay) (A) | ITFP | 53°20′ | 60°25′ | 144 | 1941- |
Dept. of Transport |
Radiosonde station. Constructed to aid wartime North Atlantic flying. Since a similar air base in Newfoundland was named Gander, this station was named Goose. |
Hebron | IIP | 58°12′ | 63°37′ | 50 | 1883- (b) | Moravian Mission |
Observing station operated by USAAF 1942-1946. |
Hopedale | ITP | 55°27′ | 60°14′ | 35 | 1867- (b) | Moravian Mission |
Observations by Canadian Marconi Co. since 1942. |
Nain | IIP | 56°33′ | 61°41′ | 14 | 1883- (b) | Moravian Mission |
For a long time Nain was the seat of the Moravian Bishop of Labrador and the German Consul. |
North West River | I | 53°3′ | 60°10′ | 12 | 1900-1942(b) |
S. Cotter, H.B. Co. |
|
Nutak | IIP | 57°28′ | 60°50′ | 5 | 1947- |
Dept. of Natural Resources, Nfld. |
|
Okkak | II | 57°34′ | 62°3′ | 20 | 1776-1889(b) | Moravian Mission |
Settlement ravaged by influenza in 1918 and survivors formed a new community called Nutak a few miles to the south on the same island. |
Ramah | II | 58°53′ | 62°21′ | 10 | 1872-1889(b) | Moravian Mission | |
Rigolet | II | 54°8′ | 57°12′ | 40 | 1857-1863(b) | H.B. Co. | |
Sandgirt Lake | I | 53°50′ | 65°30′ | 1485 | 1937-1948(b) |
Labrador Mining & Exploration Co. |
Operated by Dept. of Transport after 1942. |
Skynner Cove | I | 59°10′ | 63°20′ | ---- | 1884-1886 | W. Skynner |
Observations during Hudson Bay Expedition 1884-1885. |
Zoar | II | 56°7′ | 61°22′ | 40 | 1883-1902 | Moravian Mission |
Magnetic Observatory had been established in Canada in 1839, Colonel Sabine
and Sir John Herschel, Bart, persuaded the Royal Society to sanction a
magnetic survey of British possessions in North America. This survey was
undertaken by Lieut. J.H. Lefroy who had been placed in charge of the obser–
vatory at Toronto in 1841. The survey covered a route which extended from
Montreal to Hudson Bay and as far north as Fort Good Hope. The survey party
travelled by means of canoe transport provided by the Hudson’s Bay Company.
rological observations at each stopping place. Frequently, during periods
of magnetic disturbance, observations were taken at two-minute intervals
for hours at a time.
given below.
April 30, 1843 | Departure from Lachine |
May 20 | Sault de Ste. Marie |
June 19 | Rat Portage |
June 28 | Fort Garry (Winnipeg) |
July 12 | Norway House |
July 23 | York Factory |
Aug. 20 | The Pas |
Sept. 9-11 | Isle a la Crosse |
Sept. 23, 1843 to March 5, 1844 | Fort Chipewyan |
March 26 - May 25, 1844 | Fort Simpson |
May 29 | Fort Good Hope |
Arctic Circle and was keenly disappointed when he later learned that its
latitude was only 66° 16′ N. Lefroy started south from Fort Good Hope on
May 31, 1844, and arrived back at Montreal on November 25 after retracing
much of his former route.
Henry Lefroy’s Autobiography published in 1895. A part of this autobiography
was reprinted in Trans. Roy. Soc. of Canada, 1938, edited by W.S. Wallace.
Weyprecht of Austria brought forward the suggestion that the value of
scientific observations in polar regions could be increased considerably
if such observations were taken simultaneously at many stations. Lieut.
Weyprecht died shortly thereafter but his ideas stimulated international
scientific thought and an International Polar Commission was formed to
study the question further.
be held from August 1882 to August 1883, and twelve countries agreed to take
part by establishing an observing station in the Arctic of Antarctic for this
period. The countries represented were, in alphabetical order, Austria,
Denmark, England and Canada, Finland, France, Germany, Holland, Norway,
Russia, Sweden and the United States.
Service, was approached by Dr. F. Wild of St. Petersburg, Russia, the
president of the International Polar Commission, to obtain the co-operation
of Canada during the International Polar Year. In view of the benefits which
Canada would derive from such a scheme, the proposal was heartily endorsed
by the Meteorological Service. The Department of Marine and Fisheries was
unable to recommend the expenditure for the establishment of an Arctic
station by Canada, but an agreement was made with Great Britain whereby
Great Britain supplied the staff and equipment to operate a station at
Fort Rae, N.W.T., (lat. 62° 40′ N, long. 115° 45′ W) and the costs of trans–
portation were shared by Canada. A sum of $5000 was voted by the Canadian
Government for this purpose.
Dawson, R.A. Meteorological and magnetic observations were taken every hour
night and day. On the first and fifteenth of each month, observations were
taken every five minutes, and for one full hour on each of these days,
every 20 seconds, to determine minor variations in the magnetic elements.
during the First Polar Year were located at Fort Conger on North Ellesmere
Island (lat. 81° 44′ long. 64° 45′ W) and at Kingua Fjord, Cumberland
Sound, Baffin Island (lat. 66° 36′ N, long. 67° 20′ W). The station at Fort
Conger was established by the United States and that at Kingua Fjord by
Germany. The results of these expeditions were published in the following
works.
1882-83, Fort Rae.
the United States Expedition to Lady Franklin Bay, Grinnell
Land, Vols. 1 and 2, by Lieut. A.W. Greely. Washington, 1888.
Ergebnisse der Deutschen Stationen, Band 1, Kingua-Fjord. Berlin, 1886.
Department of Marine and Fisheries in 1884 to determine for what period of the
year navigation is possible in Hudson Strait. The expedition was under the
command of Lieut. A.R. Gordon, R.N., who was the assistant-director of the
Meteorological Service. Observing stations were established on both shores of
Hudson Strait and meteorological observations as well as observations of ice
conditions were taken for a two-year period.
a former sealing vessel which had been chartered by the Department of Marine
and Fisheries. The first station was established on August 5 on the north–
western shore of Cape Chidley (lat. 60° 25′ N, long. 64° 51′ W) and named
Port Burwell after the observer, H.M. Burwell, who was appointed to that
station.
north shore of Hudson Strait (lat. 62° 33′ N, long. 70° 35′ W), named after
the observer, W.A. Ashe.
at a spot named Stupart’s Bay after the observer R.F. Stupart (lat. 61° 35′ N,
long. 71° 32′ W). It had been considered advisable that in addition to the
meteorological observations taken at the various stations, a series of magnetic
readings should be taken at one of them. Since Mr. Stupart had had several
years’ experience in magnetic work, he was selected to take charge of one of
the stations and carry out this work. The magnetic instruments were the same
ones that had been used by Captain Dawson at Fort Rae and were loaned to the
expedition by Mr. G.M. Whipple, Director of the Kew Observatory, London, England.
Nottingham Island (lat. 63° 12′ N. long. 77° 28′ W) with C.V. de Boucherville
in charge. From Nottingham Island the vessel proceeded to Churchill where
arrangements were made with J.R. Spencer of the Hudson’s Bay Company to take
meteorological observations.
at Port Laperriere on Digges Island, (lat. 62° 35′ N, long. 78° 1′W), with
A.N. Laperriere in charge. It had been planned to locate the sixth and last
station on Resolution Island but a suitable anchorage could not be found and
this plan was abandoned. The station was established at Skynner Cove in
Nachvak Bay instead, (lat. 59° 10′N, long. 63° 20′W), with W. Skynner in
charge. All the stations were maintained for the second year, 1885-6, with
the exception of Skynner Cove.
which had been specially rebuilt for the Arctic expedition of 1876 under the
command of Sir George Nares. Her Majesty’s Government refitted the Alert to assist in the rescue of the expedition commanded by Lieut. Greenly during the
First Polar Year. When Greely’s expedition has been rescued, the Alert was
handed over to the Canadian Government. The station which was established
on North Ellesmere Island in the spring of 1950 was named after this ship.
Bay Expedition under the Command of Lieut. A.R. Cordon, R.N., 1884-5-6,
Canadian Government Reports.
1932-33, was organized by the International Meteorological Conference of
Directors at Copenhagen in 1929 to commemorate the 50th anniversary of the
Polar Year 1882-83. The object was to establish as many stations as possible
in the polar regions where meteorological, magnetic and auroral observations
could be made. A period of operation extending from August 1, 1932 to
August 31, 1933 was agreed upon.
were in operation during the First Polar Year could be re-activated. Great
Britain requested, and was granted, permission to re-occupy the station at
Fort Rae. Canada undertook to maintain three special stations at Chesterfield
Inlet, Cape Hope’s Advance and Coppermine, and to provide additional equipment
to the permanent magnetic station at Meanook, Alberta.
was the principal Canadian station. It was fully equipped for taking continuous records of terrestrial magnetism, meteorological elements, earth potentials,
atmospheric potential gradient, earth temperatures and photographic and visual
auroral observations. A secondary magnetic and auroral observing station was
maintained 20 miles south of the main base.
Department of Terrestrial Magnetism of the Carnegie Institute in Washington.
He had personal charge of the magnetic programme, and through his past
experience as a member of the Byrd Antarctic Expedition 1928-30, he was able
to obtain very complete records of the magnetic elements in a region where
they are greatly disturbed most of the time.
in charge of R.C. Jacobsen, M.A., of Toronto. It was the most northerly of the
Canadian stations and the chief meteorological station. A full programme of
meteorological observations was carried out which consisted of the regular
surface observations, continuous records of temperature at the top of a 100-feet
mast and on the ground, as well as kite and balloon observations.
Moltchanoff radiosonde instruments which were provided by the International
Commission for the Polar Year as a gift from the Rockefeller Foundation. This
was the first time that such an instrument was used in North America.
was in charge of J.E. Lilly, B.Sc., M.A. The work at this station consisted of
surface weather and pilot balloon observations as well as visual and photographic
auroral observations.
above-named three stations prior to the Polar Year, and valuable assistance
in carrying out the observational programme was given by the radio operators.
The results of the British and Canadian expeditions are published in the
following reports.
Society, London. 1937.
Ottawa. 1939.
1947-50 . - The establishment of a network of weather stations on the
Canadian Arctic islands is of great benefit not only to the Canadian Meteoro–
logical Service but to the United States Weather Bureau as well. In view of
their community of interest in such a project, Canada and the United States
entered upon an agreement in 1946 whereby they would jointly staff and operate
a series of weather stations in the Canadian Arctic.
April, 1947, at Slidre Fjord on Ellesmere Island (lat. 80° 13′N, long. 86° 11′W).
The station was named Eureka. The transport of men and supplies to the station
at Eureka was accomplished entirely by air. This marked the first time that
such an operation was attempted in Canada, and since it proved successful,
the same method was used later in the establishment of other Arctic stations.
weather station and airstrip had been constructed jointly by Denmark and the
United States in 1946. The preliminary landings at Eureka were made on the sea
ice by ski-equipped aircraft carrying small bulldozers. The bulldozers were
used to level the snowdrifts over the landing area and the remainder of the
airlift was completed by four-motored transport aircraft with wheel landing gear.
Island (lat. 74° 41′N, long. 94° 55′W) in September, 1947, by sea transport.
Original plans had called for this station to be located at Winter Harbour on
Melville Island but this proved to be impractical owing to unusually severe
ice conditions in Melville Sound.
following reasons: (a) it offered excellent possibilities for airstrip construc–
tion; (b) it is situated near the centre of the Canadian Arctic Archipelago;
(c) it is accessible by cargo ship during the summer. The airstrip site was an
important factor since it was intended that this station serve as an operating
base for the support of further Arctic activities.
in April, 1948. The first, named Isachsen, is located on Ellef Ringnes Island,
(lat. 78° 47′N, long. 103° 32′W), and the second, named Mould Bay, is located
on Price Patrick Island (lat. 76° 14′N, long. 119° 50′W).
on the north shore of Ellesmere Island by airlift from Thule, Greenland, in
April, 1950.
vast area which extends over 35 degrees of latitude and 85 degrees of
longitude, an area which is comparable to that of the continent of Europe.
In order to discuss the climate of a region of this size, it is advantageous
to divide it into a number of sections such that places in the same sub–
division will have somewhat similar climates.
meagre for most parts of the Arctic, and consequently, the climatic means
for many of the stations will require some revision as further data become
available. Moreover, the stations from which observations have been received
are nearly all coastal stations, and their climatic conditions are not
necessarily representative of the climate of the interiors of the islands,
especially the larger ones. The records from the various stations are,
strictly-speaking, not directly comparable since they do not extend over the
same periods of time. The years of record for each station are given in the
climatic tables.
The chief climatic controls are latitude, nature of terrain and relative
distribution of land and water. For the regions under consideration, the
most important of these controls is the relative distribution of land and
water or ice as the case may be.
differences between the eastern and western sections of the Arctic, it is necessary to consider the broad pattern of the general circulation of the
atmosphere. An examination of mean winter pressure charts for the Northern
Hemisphere will reveal that there is a vast high pressure area over most of
the Canadian Arctic flanked by low pressure areas over the Aleutian Islands
to the west and over Davis Strait to the east. The high pressure area does
not remain limited within fixed boundaries, but throughout the winter, surges
of polar air occur at intervals which travel southward along the Mackenzie
Valley and project Arctic conditions as far as the Prairie Provinces and the
mid-western States. On the other hand, cyclonic storms which form over
eastern Canada and the United States tend to move northeastward towards the
semi-permanent trough of low pressure over Davis Strait.
in the general statement that during the winter, the western parts of the
Arctic are colder and less stormy than the eastern parts. The mean pressure
distribution also causes the average winter surface air flow in the Arctic
Islands to be from north-northwest to south-southeast.
distribution of the winter becomes less pronounced and pressure gradients
are comparatively weak. In this period, the weather in the Arctic is
in fluenced by weak disturbances which develop along the Polar Front, the
boundary line between air masses of tropical origin and those of polar origin.
The mean summer position of this front lies across Alaska and northern Canada
near the Arctic Circle.
may be divided into eight climatic regions. These regions, whose boundaries
are shown on the accompanying chart, have been arbitrarily named as follows:
(1) Northern Islands, (2) Southwestern Islands, (3) Eastern Arctic,
(4) Hudson Bay and Strait, (5) Labrador Coast, (6) Mackenzie Valley,
(7) Barren Lands, (8) Laurentian Plateau. It may be noted that the southern
boundary of sub-Arctic Canada lies near the isotherm which passes through
points with a mean annual temperature of 32°F. The southern limit of
permafrost, i.e., permanently frozen sub-soil, as given by J.L. Jenness, is
also shown on the chart.
regions is the fact that temperatures are consistently low and the winters
exceptionally severe. The hardships and suffering from cold and scurvy of
the earliest Arctic expeditions gave the Arctic a reputation, which is not
entirely deserved, of possessing an unendurable winter climate. These
hardships were overcome by later expeditions with the use of better heating
equipment, insulated quarters and proper diet. For example, in 1819-20,
Parry’s men were in perfect health after spending the winter at Melville
Island.
maritime type. Although it is true that the polar seas are frozen over for
nearly three-quarters of the year, there is sufficient radiation through the
ice from the comparatively warm water below to exert a moderating influence. Thus the extreme low temperature for any point in this region is rarely
lower than −60°F whereas temperatures 20 degrees colder than this have been
experienced in the Mackenzie Valley.
lowest that are to be found anywhere in the Canadian Arctic. For seven
months of the year, from October to April, mean monthly temperatures are
below zero over the entire region. As a matter of fact, from November 11,
1948, to April 27, 1949, the temperature at Eureka rose above zero on only
three occasions.
with a surface temperature near 30°F prevent the air in contact with them
from warming up to any great extent. Moreover, an incursion of warm air from
the south is cooled rapidly in its lower layers by contact with the cold
water. As a result, summer temperatures are low and maximum temperatures as
high as 60°F have not been recorded at many stations. Mean summer temperatures
throughout the region show little variation from year to year and the average
temperature of the warmest month, July, is generally near 40°F.
and below the horizon for a corresponding period in mid-winter. Consequently,
it is only during the spring and fall months that a diurnal range of
temperature from a minimum near sunrise to a maximum in the afternoon is
appreciable. During the summer and winter, changes in temperature arise
mainly from changes of air mass, the occurrence or dissipation of fog or cloud,
the local effect of falling precipitation or changes in wind speed or direction.
that there are only two seasons in the Northern Islands, ten cold months
and two cool ones. Frost may occur in any month but temperatures do not
remain consistently below freezing until September. Mean temperatures in
September are well below freezing, with 16°F at Isachsen, 21°F at Eureka
and 23°F at Resolute. Average temperatures continue to drop rapidly from
October on, reaching −30°F to −40°F by January. The mean temperature levels
off in February although the extreme low temperatures are usually experienced
in late February or early March.
on northern Ellesmere Island with Eureka reporting −41°F and Fort Conger
−40°F. Although both of these means have been derived from a series of
observations extending over less than three years, it is probable that they
are representative of conditions in this area and that the “cold pole” for
North America is to be found in this vicinity.
sun’s elevation increase, but above-freezing temperatures are not common
until the beginning of June. An indication of the temperature regime over
the Northern Islands may be obtained from the following table.
Eureka | Fort Conger | Isachsen | Mould Bay | Resolute | Winter Harbour | |
Lat. (°N) | 80°13′ | 81°44′ | 78°47′ | 76°14′ | 74°41′ | 74°47′ |
Long. (°W) | 86°11′ | 64°45′ | 103°32′ | 119°50′ | 94°55′ | 110°48′ |
Years of Record |
1947-1949 | 1881-1883 | 1948-1949 | 1948-1949 | 1947-1949 | 1819-20, 1908-09 |
Jan. | −37 | −38 | −37 | −32 | −28 | −30 |
Feb. | −41 | −40 | −29 | −31 | −35 | −31 |
Mar. | −31 | −28 | −27 | −20 | −26 | −16 |
Apr. | −20 | −14 | −20 | −11 | −11 | −12 |
May | 13 | 14 | 12 | 11 | 12 | 17 |
June | 38 | 33 | 31 | 29 | 33 | 33 |
July | 43 | 37 | 38 | 38 | 41 | 42 |
Aug. | 38 | 34 | 34 | 34 | 38 | 33 |
Sept. | 21 | 16 | 16 | 18 | 23 | 19 |
Oct. | −3 | −9 | −3 | 0 | 7 | 0 |
Nov. | −20 | −24 | −16 | −17 | −6 | −19 |
Dec. | −41 | −28 | −37 | −28 | −21 | −29 |
Year | −3 | −4 | −3 | −1 | 2 | 1 |
Range | 84 | 77 | 75 | 70 | 76 | 73 |
Highest | 66 | 53 | 64 | 57 | 59 | 60 |
Lowest | −63 | −63 | −55 | −63 | −55 | −56 |
generally less than five inches per year, which is less than that over the
driest parts of the Prairie Provinces. In order to arrive at the figures
for total annual precipitation, the amount of snowfall has been converted
to equivalent rain on the assumption that ten inches of snow are equivalent
in water content to one inch of rain. It should be noted that this method
of conversion, which is the standard procedure in the Meteorological
Service, is a close approximation in temperate climates where the snow is
soft and fluffy. On the other hand, in the Arctic the snow crystals are
similar to grains of sand and a conversion factor of
of snow to one inch of rain would be closer to the truth.
relatively light during the winter since air temperatures are so low that
the amount of precipitable water vapour in the air is extremely small. In
open country, the snow on the ground is rarely over 12 inches deep and the
ground is bare in many spots. However, deep compact drifts are formed around
obstacles and in valleys. These drifts are so hard-packed that tractors can
be driven over them.
blowing snow which occur on the average about once every two weeks. The
snow crystals are quite small and when the wind increases to more than
15 m.p.h., the snow particles begin to be carried aloft. If the wind is
higher than 40 m.p.h., the visibility is reduced to near zero in blowing
snow.
and about one-half of the total annual snowfall may be expected in these
two months. The snow becomes soft towards the end of May although the
amount of melting is slight until the beginning of June. Once the
melting process has started, the snow disappears very rapidly and the
islands are snow-free by the end of June except in isolated areas such as
ravines or high terrain.
not remain on the ground until September. The precipitation during July
and August is chiefly in the form of light rain or drizzle. The station
which reports the lowest annual precipitation is Eureka, with a mean
total of 1.62 inches according to a limited series of observations. In
temperate zones, an annual total of this magnitude is found only in desert
regions.
total annual precipitation at various stations in this region are given
in the following table.
Mean Annual Total Precipitation Converted to Inches of Rain
Eureka | Fort Conger | Isachsen | Mould Bay | Resolute | Winter Harbour | |||||||
Lat. (°N) | 80°13′ | 81°44′ | 78°47′ | 76°14′ | 74°41′ | 74°47′ | ||||||
Long. (°W) | 86°11′ | 64°45′ | 103°32′ | 119°50′ | 94°55′ | 110°48′ | ||||||
Years of Record |
1947-1949 | 1881-1883 | 1948-1949 | 1948-1949 | 1947-1949 | 1908-09 | ||||||
R | S | R | S | R | S | R | S | R | S | R | S | |
Jan. | 0 | 1.1 | 0.42 | 0 | 1.4 | 0 | 0.4 | 0 | 0.4 | 0.89 | ||
Feb. | 0 | 0.6 | 0.13 | 0 | 0.2 | 0 | 0.5 | 0 | 1.2 | 0.79 | ||
Mar. | 0 | 1.4 | 0.44 | 0 | 0.7 | 0 | 1.2 | 0 | 1.6 | 0.93 | ||
Apr. | 0 | 0.1 | 0.17 | 0 | 0.5 | 0 | 0.4 | 0 | 1.0 | 0.43 | ||
May | 0 | 2.0 | 0.40 | 0 | 4.6 | 0 | 1.0 | 0 | 8.0 | 1.08 | ||
June | 0.01 | 0.1 | 0.18 | trace | 2.0 | 0.06 | 2.5 | 0.56 | 2.0 | 0.04 | ||
July | 0.27 | 0 | 0.66 | 0.49 | 0.7 | 1.04 | 0.2 | 1.10 | 0.7 | -- | ||
Aug. | 0.23 | 0.6 | 0.38 | 0.47 | 0.3 | 0.25 | 1.6 | 0.62 | 1.7 | -- | ||
Sept. | 0 | 2.8 | 0.35 | 0 | 7.7 | trace | 4.7 | 0.32 | 7.4 | 0.94 | ||
Oct. | 0 | 1.0 | 0.24 | 0 | 2.7 | 0 | 1.2 | 0.01 | 5.2 | 0.38 | ||
Nov. | 0 | 1.0 | 0.20 | 0 | 4.1 | 0 | 0.6 | 0 | 2.4 | 0.32 | ||
Dec. | 0 | 0.4 | 0.30 | 0 | 0.1 | 0 | 0.1 | 0 | 0.5 | 0.14 | ||
Year | 1.62 | 3.88 | 3.46 | 2.79 | 5.82 | Incomplete |
the Arctic Archipelago. Any clouds which occur are mainly of the ice
crystal type for frontal systems are usually far to the south. This clear
weather lasts until April when the cloudiness begins to increase, reaching
a maximum in May or June. The mean cloud amount decreases in July but
increases again to a secondary maximum in August or September. The
cloudiness of winter. It may be noted that Arctic cloud conditions, which
are characterized by a summer maximum and a winter minimum, are just the
reverse of those which occur in temperate latitude s .
shallow deck of low stratus whose base is often lower than 500 feet. As
the air blows over the icy waters, its lower layers are near saturation.
When this air is forced to rise over any obstacle such as the shore of an
island, the slight amount of additional cooling is sufficient to lower the
temperature of the air below its de w point, which results in the formation
of fog and low cloud. The amount of summer cloudiness may be judged from
the fact that in August 1948, there were only 48 hours of sunshine at
Resolute out of a possible 662 hours. This is undoubtedly an extreme case
but it serves as an illustration.
the period of open water in the same manner as the low cloud. Since this
type of fog is essentially a coastal phenomenon, it is possible that the
interiors of the larger islands may be comparatively fog-free with the exception of some radiation fog.
of light winds. However, this type of fog is rarely very thick, and during
a two-year period at Resolute, the visibility in ice crystal fog was seldom
reduced to less than one mile. Another type of winter fog known as “Arctic
sea smoke” occurs over leads of open water and is usually limited in extent
to the immediate vicinity of the open water.
the coastal areas
75% occur during the three months June, July and August. Short term records
from the stations at Isachsen and Mould Bay would seem to indicate that the
frequency of fog is somewhat greater in the islands bordering on the Arctic
Ocean, possibly as high as 40 days per year.
September and the open sea is frozen over in October except for occasional
leads which may occur throughout the winter. The new ice increases at a
relatively constant rate of about one foot per month from November to March.
The rate of ice growth falls off as the sun’s elevation increases, and a
maximum thickness of about seven feet on the average is reached in early
June. Much greater thickness of sea ice may occur where the edges of leads
are forced together by winds or currents to form towering pressure ridges.
Southwestern Islands . - This region includes the islands of Banks, Victoria
and King William which are located near the continental shoreline. The
temperature regime is similar to that over the Northern Islands. However, some latitudinal control is evident in the fact that mean winter
temperatures are of the order of 10°F higher than those in the Northern
Islands although extreme low temperatures are much the same.
higher than any recorded in the Northern Islands; for example, 78°F at
Holman Island and 76°F at Cambridge Bay. Even higher temperatures have no
doubt been experienced in the interior of Banks and Victoria Islands.
These comparatively high temperatures result from the fact that the islands
can be reached by incursions of warm air from the south with very little
modification. However, it is interesting to note the effect of a body of
water as narrow as Coronation Gulf, for an extreme high temperature of 87°F
has been recorded at Coppermine, 11°F higher than that at Cambridge Bay on
the opposite shore of the gulf.
following table for the only two stations in this region from which records
are available.
Cambridge Bay | Holman Island | |
Lat. (°N) | 69° 7′ | 70° 30′ |
Long. (°W) | 105° 1′ | 117° 38′ |
Years of Record |
1928-29, 1935-38 1940-50 |
1940-50 |
Jan. | −25 | −17 |
Feb. | −28 | −20 |
Mar. | −19 | −13 |
Apr. | −7 | 1 |
May | 15 | 22 |
June | 35 | 38 |
July | 47 | 46 |
Aug. | 45 | 43 |
Sept. | 31 | 32 |
Oct. | 12 | 18 |
Nov. | −9 | −1 |
Dec. | −26 | −12 |
Year | 6 | 11 |
Range | 75 | 66 |
Highest | 76 | 78 |
Lowest | −63 | −48 |
eight inches, about double the average over the Northern Islands. This
is mainly because of a greater amount of snowfall which is distributed
throughout the year with a minimum during the months of July and August
and a maximum in October or November. An indication of the annual
precipitation regime may be obtained from the following values for Cambridge
Bay and Holman Island.
Mean Annual, Total Precipitation Converted to Inches of Rain
Cambridge Bay | Holman Island | ||||
Lat. (°N) | 69° 7′ | 70° 30′ | |||
Long. (°W) | 105° 1′ | 117° 38′ | |||
Years of Record | 1928-29, 1935-38, 1940-50 | 1940-50 | |||
R | S | R | S | ||
Jan. | 0 | 3.1 | 0 | 2.1 | |
Feb. | 0 | 1.8 | 0 | 3.8 | |
Mar. | 0 | 2.2 | 0 | 4.2 | |
Apr. | 0 | 1.8 | 0 | 3.3 | |
May | 0.01 | 2.9 | 0.02 | 4.1 | |
June | 0.18 | 2.9 | 0.22 | 1.0 | |
July | 0.81 | 0.1 | 0.75 | 0 | |
Aug. | 0.86 | trace | 1.46 | 1.5 | |
Sept. | 0.35 | 2.9 | 0.57 | 2.8 | |
Oct. | 0.02 | 6.9 | 0.05 | 7.2 | |
Nov. | 0 | 5.4 | 0 | 3.5 | |
Dec. | 0 | 2.5 | 0 | 2.2 | |
2.23 | 3.07 | ||||
Year | 5.48 | 6.64 | |||
41% | 46 |
to those over the Northern Islands and storms of blowing snow occur with
about the same frequency. The average depth of the winter snow cover
is small and the ground is bare in many spots. The straits and channels
freeze over somewhat later than those in the Northern Islands; for example,
Coronation Gulf does not freeze over until about the first of November.
the same as those over the rest of the Archipelago. However, conditions
in the interior of Banks and Victoria Islands are probably quite different
from these. For example, Stefansson states: “Through later experience
in hunting and through discussions with Victoria Island Eskimos who were
visiting Banks Island that summer, we conclude that fogs of this type
seldom go more than 15 miles inland and probably never more than 20. So
there is in the interior of an Arctic island as large as Banks, at least
if the island is low, a considerable area nearly free of this type of fog,
which is the most common of the Arctic fogs”.
open water in Baffin Bay adjacent to Smith, Jones and Lancaster Sounds.
Moreover, Lancaster Sound itself rarely freezes over completely. From
Bylot Island to Cape Dyer, Baffin Bay freezes over to the Greenland coast,
but south of Cape Dyer, tides and currents limit the seaward growth of
the ice shelf. The presence of this open water and the circulation around
the semi-permanent low over Davis Strait which brings in air from the
Atlantic combine to give this region higher mean winter temperatures, a greater annual precipitation and a higher frequency of storms than the
islands to the north and west.
remainder of the Archipelago with the mean temperature of the warmest month,
July, in the range 40-45°F. On rare occasions a temperature over 70°F
may be experienced; for example, a high of 75°F has occurred at Arctic
Bay, 71°F at Clyde River and 77°F at Pond Inlet.
for most stations. Pond Inlet and Clyde River both report between five
and six inches but it is believed that their sheltered location causes
them to have less precipitation than the regional average. The increase
in annual precipitation over that of the islands to the north and west is
due partly to a larger amount of summer rainfall and partly to a much
greater snowfall in the latter part of the year. There is a marked
maximum snowfall in October corresponding to the period when cyclonic
storms are frequent in the Davis Strait area. Temperature and precipita–
tion values for typical stations in this region are given in the
following tables.
Arctic Bay | Clyde River | Craig Harbour | Dundas Harbour | Fort Ross | Pond Inlet | |
Lat.(°N) | 73° 0′ | 70° 25′ | 76° 12′ | 74° 34′ | 71° 55′ | 72° 43′ |
Long.(°W) | 85° 18′ | 68° 17′ | 79° 35′ | 82° 10′ | 94° 15′ | 78° 30′ |
Years of Record |
1937-49 | 1942-48 | 1933-39 |
1930-49 (broken) |
1937-48 | 1931-49 |
Jan. | −20 | −14 | −21 | −16 | −20 | −25 |
Feb. | −26 | −17 | −23 | −18 | −25 | −29 |
Mar. | −17 | −14 | −14 | −10 | −16 | −20 |
Apr. | −4 | −2 | −2 | −1 | −7 | −2 |
May | 19 | 19 | 17 | 22 | 16 | 20 |
June | 36 | 33 | 34 | 36 | 32 | 35 |
July | 44 | 40 | 41 | 42 | 40 | 42 |
Aug. | 41 | 39 | 38 | 40 | 36 | 40 |
Sept. | 30 | 32 | 28 | 30 | 25 | 31 |
Oct. | 14 | 21 | 12 | 16 | 10 | 15 |
Nov. | −4 | 3 | −5 | 2 | −7 | −5 |
Dec. | −16 | −9 | −18 | −12 | −15 | −20 |
Year | 8 | 11 | 7 | 11 | 6 | 7 |
Range | 70 | 57 | 64 | 60 | 65 | 71 |
Highest | 75 | 71 | 67 | 64 | 64 | 77 |
Lowest | −57 | −47 | −49 | −44 | −57 | −60 |
Mean Annual Total Precipitation Converted to Inches of Rain
Arctic Bay | Clyde River | Craig Harbour | Dundas Harbour | Fort Ross | Pond Inlet | |||||||
Lat.(°N) | 73° 0′ | 70° 25′ | 76° 12′ | 74° 34′ | 71° 55′ | 72° 43′ | ||||||
Long.(°W) | 85° 18′ | 68° 17′ | 79° 35′ | 82° 10′ | 94° 15′ | 78° 30′ | ||||||
Years of Record |
1937-49 | 1942-48 | 1933-39 |
1930-49 (broken) |
1937-48 | 1931-49 | ||||||
R | S | R | S | R | S | R | S | R | S | R | S | |
Jan. | 0 | 3.4 | 0 | 2.4 | 0 | 3.8 | 0 | 2.2 | 0 | 6.7 | 0 | 2.2 |
Feb. | 0 | 1.9 | 0 | 2.3 | 0 | 2.4 | 0 | 3.0 | 0 | 3.0 | 0 | 1.2 |
Mar. | 0 | 3.1 | 0 | 0.8 | 0 | 5.4 | 0 | 3.1 | 0 | 3.9 | 0 | 1.9 |
Apr. | 0 | 2.7 | 0 | 0.4 | 0 | 5.7 | 0 | 2.6 | 0 | 3.3 | 0 | 3.6 |
May | 0.03 | 2.9 | 0 | 3.8 | 0 | 4.5 | 0 | 6.6 | 0.01 | 4.4 | 0 | 1.2 |
June | 0.23 | 2.5 | 0.07 | 1.5 | 0.21 | 4.2 | 0.45 | 4.7 | 0.55 | 5.2 | 0.41 | 1.3 |
July | 0.72 | 0.1 | 0.80 | 1.0 | 0.93 | 0 | 1.23 | 0.1 | 2.56 | 0.3 | 1.12 | trace |
Aug. | 1.24 | 0.5 | 1.20 | trace | 1.73 | 0.6 | 1.56 | 0.9 | 1.38 | 0.5 | 1.26 | 0.1 |
Sept. | 0.23 | 6.6 | 0.34 | 1.0 | 0.13 | 5.4 | 0.73 | 7.3 | 0.20 | 11.5 | 0.32 | 2.8 |
Oct. | 0 | 6.9 | 0 | 11.0 | 0 | 18.6 | 0 | 14.1 | 0 | 12.3 | 0 | 7.1 |
Nov. | 0 | 3.8 | 0 | 8.0 | 0 | 7.7 | 0 | 5.6 | 0 | 9.0 | 0 | 3.9 |
Dec. | 0 | 3.0 | 0 | 1.1 | 0 | 2.2 | 0 | 2.9 | 0 | 3.2 | 0 | 2.9 |
2.45 | 2.41 | 3.00 | 3.97 | 4.70 | 3.11 | |||||||
Year | 6.19 | 5.74 | 9.05 | 9.28 | 11.03 | 5.93 | ||||||
40% | 42 | 33% | 43% | 43% | 52% |
Arctic Archipelago with maximum cloudiness during the summer and a minimum
in the winter. However, the presence of open water and the passage of
cyclonic storms to the south cause the winter minimum to be much less
pronounced than that over the Northern Islands.
one than that of the foregoing regions. This is due to the proximity of
such vast bodies of water as Davis Strait, Hudson Bay and Hudson Strait and
the fact that a considerable part of these waters remains open all winter.
There is no evidence to indicate that Hudson Strait has ever been frozen
over completely along its entire length. However, contrary to popular
opinion, Hudson Bay does freeze over, usually about the first week in
January. This has been proved by a series of reconnaissance flights carried
out by the Royal Canadian Air Force during the years 1948-50.
water, another factor which helps to raise the mean winter temperatures is
the proximity of this region to the average path of winter storms. The
cyclonic circulation around these storms pumps warm air from the Atlantic
over the eastern Arctic causing mild spells which are unknown in the
western sections. These mild spells may sometimes extend as far westward
as Cornwallis Island and as far north a s Ellesmere Island.
between 55 and 65 degrees. A notable exception is Resolution Island with
a range of only 39 degrees. This is not surprising since Resolution
Island has a very small area and is constantly surrounded by ic y waters.
to −50°F and extreme high temperatures 70°F to 80°F. Of course it should
be kept in mind that temperatures near the extreme values may not be
experienced oftener than once in three or four years. For example, although
an extreme high temperature of 79°F has been recorded at Coral Harbour, in
1947 the highest summer temperature was only 62°F.
effect of the ice-filled waters for the mean July temperatures are not
appreciably higher than those over the Northern Islands in spite of a
difference in latitude of 15-25 degrees. Temperature values for typical
stations in this region are given in the following table.
Cape Hope’s Advance |
Coral Harbour |
Lake Harbour |
Nottingham Island |
Pangnirtung |
Port Harrison |
Resolution Island |
|
Lat.(°N) | 61° 5′ | 64° 11′ | 62° 50′ | 63° 7′ | 66° 9′ | 58° 27′ | 61° 18′ |
Long.(°W) | 69° 33′ | 86° 17′ | 69° 55′ | 77° 56′ | 65° 30′ | 78° 8′ | 64° 53′ |
Years of Record |
1928-49 (broken) |
1943-48 |
1884-46 (broken) |
1928-49 | 1925-42 | 1921-50 | 1929-48 |
Jan. | −8 | −22 | −12 | −13 | −16 | −14 | 0 |
Feb. | −10 | −20 | −11 | −14 | −17 | −16 | −1 |
Mar. | 0 | −14 | −2 | −4 | −6 | −6 | 6 |
Apr. | 11 | 1 | 11 | 9 | 9 | 12 | 15 |
May | 25 | 19 | 27 | 24 | 25 | 28 | 27 |
June | 35 | 35 | 38 | 35 | 37 | 39 | 34 |
July | 42 | 46 | 46 | 42 | 46 | 47 | 38 |
Aug. | 42 | 45 | 44 | 42 | 44 | 47 | 38 |
Sept. | 36 | 31 | 36 | 35 | 37 | 41 | 35 |
Oct. | 28 | 18 | 25 | 26 | 24 | 31 | 29 |
Nov. | 19 | 6 | 12 | 12 | 12 | 17 | 21 |
Dec. | 4 | −11 | −3 | −4 | −7 | −2 | 8 |
Year | 18 | 11 | 18 | 16 | 16 | 19 | 21 |
Range | 52 | 68 | 58 | 56 | 63 | 63 | 39 |
Highest | 81 | 79 | 80 | 73 | 70 | 80 | 61 |
Lowest | −37 | −57 | −49 | −42 | −52 | −57 | −36 |
across eastern Canada is reflected in the greater annual precipitation as
compared with that over the regions to the north and west. The mean
annual total is near 15 inches of which about 50% is in the form of snow.
The greatest amount of snowfall may be expected in November and nearly
half of the annual snowfall occurs in the months October, November and
December.
region are given in the following table.
Mean Annual Total Precipitation converted to Inches of Rain
Cape Hope’s Advance |
Coral Harbour |
Lake Harbour |
Nottingham Island |
Pangnirtung |
Port Harrison |
Resolution Island |
||||||||
Lat.(°N) | 61° 5′ | 64° 11′ | 62° 50′ | 63° 7′ | 66° 9′ | 58° 27′ | 61° 18′ | |||||||
Long.(°W) | 69° 33′ | 86° 17′ | 69° 55′ | 77° 56′ | 65° 30′ | 78° 8′ | 64° 53′ | |||||||
Years of Record |
1928-49 (broken) |
1943-48 |
1884-46 (broken) |
1928-49 | 1925-42 | 1921-50 | 1929-48 | |||||||
R | S | R | S | R | S | R | S | R | S | R | S | R | S | |
Jan. | 0 | 6.2 | 0 | 3.1 | 0.02 | 8.9 | 0 | 5.1 | 0 | 7.5 | 0 | 6.6 | 0 | 10.6 |
Feb. | 0 | 2.3 | 0 | 4.0 | 0 | 10.3 | 0 | 5.1 | 0 | 4.7 | trace | 3.1 | 0.01 | 10.6 |
Mar. | 0 | 5.1 | 0 | 3.2 | 0.03 | 7.1 | trace | 6.0 | 0 | 7.5 | 0 | 8.2 | 0.01 | 9.7 |
Apr. | 0 | 7.6 | 0.18 | 5.0 | 0.08 | 10.3 | 0 | 8.9 | 0.05 | 9.3 | 0.02 | 7.1 | 0.04 | 8.3 |
May | 0.32 | 6.0 | trace | 6.3 | 0.27 | 8.8 | 0.10 | 6.7 | 0.23 | 4.3 | 0.29 | 5.3 | 0.36 | 8.2 |
June | 1.07 | 2.0 | 0.51 | 1.1 | 0.96 | 0.9 | 0.51 | 3.0 | 0.74 | 2.0 | 0.77 | 1.5 | 0.99 | 3.3 |
July | 2.31 | trace | 1.46 | 0 | 2.44 | 0 | 1.30 | 0.8 | 1.50 | trace | 1.55 | trace | 1.91 | 0 |
Aug. | 1.73 | trace | 1.20 | 0 | 1.63 | 0.1 | 1.62 | 0.4 | 2.30 | trace | 1.78 | trace | 1.60 | 0.2 |
Sept. | 1.90 | 1.8 | 0.72 | 2.8 | 1.43 | 1.9 | 1.07 | 3.1 | 1.01 | 2.3 | 2.06 | 3.1 | 1.84 | 2.4 |
Oct. | 0.64 | 9.2 | 0.04 | 7.6 | 0.25 | 9.2 | 0.20 | 9.2 | 0.41 | 12.5 | 1.03 | 10.8 | 0.49 | 8.4 |
Nov. | 0.03 | 5.8 | 0.03 | 8.0 | 0.02 | 16.0 | 0.01 | 14.4 | 0.01 | 11.4 | 0.12 | 20.1 | 0.04 | 12.3 |
Dec. | trace | 4.7 | 0 | 2.8 | 0.02 | 12.7 | Trace | 7.6 | 0 | 8.4 | 0 | 9.5 | 0 | 15.0 |
Year | 13.07 | 8.53 | 15.78 | 11.84 | 13.24 | 15.15 | 16.19 | |||||||
4.14 | 7.15 | 4.81 | 6.25 | 7.29 | ||||||||||
48% | 45% | 41% | 47% | 48% |
in Arctic regions is present to a certain extent over this area but to a
much lesser degree. As may be expected, the cloudiest regions are along
the coasts and over the ice-filled Strait. This is borne out by the
records from Resolution Island which snow a mean annual cloudiness of 77%
as compared with a general average of 50-60% over most of the Archipelago.
Arctic islands, but during the winter, fog as well as cloudiness is more
common than over the islands. The number of foggy days per year in the
coastal areas is of the order of 30-40 days. Resolution Island, in view
of its location, has the greatest number of foggy days with nearly 55
days per year.
is similar to that of the Hudson Bay and Strait region for the cold waters
of the Labrador Current cause the area to be bleak and barren. However,
some latitudinal effect is evident in the fact that mean winter temperatures
are of the order of 15-20 degrees higher than those in the Hudson Strait
region. The mean temperature of the warmest month is close to 50°F which
is near the limiting temperature for appreciable tree growth.
less than 55 degrees. Winters are not exceptionally severe and the only
station reporting an extreme low of less than −40°F is Hebron with −42°F.
Summers are uniformly cool but abnormally high temperatures may be
experienced occasionally. For example, the extreme high temperature which has been recorded at Cartwright is 96°F and 90°F at Nain. These
unusually high temperatures may occur if a warm air mass approaches the
coast from the continental area to the southwest. Temperature values for
typical coastal stations are given in the following table.
Belle Isle | Cartwright | Hebron | Nain | |
Lat. (°N) | 51° 53′ | 53° 42′ | 58° 12′ | 56° 33′ |
Long. (°W) | 55° 53′ | 57° 0′ | 62° 37′ | 61° 41′ |
Years of Record | 1883-1949 | 1934-1948 | 1883-1902 | 1883-1947 (broken) |
Jan. | 11 | 6 | –6 | –5 |
Feb. | 12 | 9 | –2 | –3 |
Mar. | 18 | 16 | 6 | 8 |
Apr. | 27 | 27 | 20 | 21 |
May | 34 | 37 | 31 | 33 |
June | 41 | 47 | 40 | 42 |
July | 48 | 56 | 47 | 49 |
Aug. | 50 | 54 | 47 | 50 |
Sept. | 45 | 48 | 40 | 43 |
Oct. | 37 | 38 | 31 | 33 |
Nov. | 28 | 28 | 19 | 20 |
Dec. | 18 | 16 | 3 | 5 |
Year | 31 | 32 | 23 | 25 |
Range | 39 | 50 | 53 | 55 |
Highest | 72 | 96 | 87 | 90 |
Lowest | –31 | –36 | –42 | –37 |
throughout the year with a mean annual total approximately 30-40 inches
for stations in the southern districts decreasing to about 20 inches in
the northern section. A large part of the precipitation is of cyclonic
origin for the mean path of continental storm centres passes through the
southern part of this region both in winter and summer. The worst storms
usually occur during the fall and winter when the temperature contrasts
between the air masses involved are the greatest.
precipitation, the amount in any month may vary considerably from year to
year. For example, in January 1891, Hebron had a total of 0.13 inches
whereas in January 1888, the total was 2.83 inches. Precipitation values
for typical coastal stations are given in the following table.
frequency of occurrence of fog, especially during the summer months. Warm,
moist air which approaches the coast from the Atlantic is cooled rapidly
to its dew point over the cold waters of the Labrador Current and an
extensive fog bank is formed. An on-shore wind will cause this fog to
move to the coast but it rarely extends very far inland.
Mean Annual Total Precipitation Converted to Inches of Rain
Belle Isle | Cartwright | Hebron | Nain | |||||
Lat.(°N) | 51° 53′ | 53° 42′ | 58° 12′ | 56° 33′ | ||||
Long.(°W) | 55° 22′ | 57° 0′ | 62° 37′ | 61° 41′ | ||||
Years of Record |
1883-1949 | 1934-1948 | 1883-1902 | 1883-1947 (broken) | ||||
R | S | R | S | R | S | R | S | |
Jan. | 0.23 | 11.3 | 0.18 | 33.0 | 0.95 | 0.09 | 27.2 | |
Feb. | 0.37 | 16.0 | 0.27 | 39.4 | 0.67 | 0.18 | 22.9 | |
Mar. | 0.53 | 16.0 | 0.06 | 37.2 | 0.86 | 0.25 | 20.2 | |
Apr. | 0.88 | 11.9 | 0.48 | 27.3 | 1.10 | 0.40 | 9.5 | |
May | 2.50 | 2.7 | 1.58 | 10.1 | 1.56 | 1.49 | 6.7 | |
June | 3.44 | 0.6 | 3.21 | 2.7 | 2.15 | 2.79 | 0.2 | |
July | 2.88 | 0 | 3.20 | 0 | 2.70 | 3.69 | 0 | |
Aug. | 3.13 | 0.2 | 3.22 | 0 | 2.71 | 2.84 | 0 | |
Sept. | 3.25 | 0.3 | 3.53 | trace | 3.34 | 3.40 | 1.1 | |
Oct. | 3.20 | 3.0 | 2.72 | 4.4 | 1.56 | 2.28 | 6.1 | |
Nov. | 2.00 | 7.5 | 1.63 | 13.5 | 1.10 | 0.75 | 10.6 | |
Dec. | 0.78 | 19.5 | 0.26 | 36.6 | 0.60 | 0.42 | 20.2 | |
Year | 32.09 | 40.78 | 19.30 | 31.05 |
continental type with its characteristically large temperature ranges.
The mean mid-winter temperatures are not greatly different from those in
the Northern Islands, but the extreme low temperatures which have been
recorded are much lower. As a matter of fact, the coldest temperature ever
recorded officially in North America is −81.4°F which occurred at Snag
Airport in the Yukon on Feb. 3, 1947.
cause the ground to warm rapidly, which in turn heats the lower layers of
the atmosphere. The mean July temperatures are near 60°F and the extreme
high temperatures which have been recorded at various stations are generally
between 90° and 100°F. This summer warmth makes it possible to grow rapidly
maturing vegetables and grain as far north as the Arctic Ocean. The warm,
humid summers and the presence of vast areas of swamp and muskeg are also
ideal breeding conditions for insect life, and the mosquitoes of this region
are noted for their size and ferocity. In spite of the high summer
temperatures, nights with frost may occur locally even in July in some years,
but on the average, the period from mid-June to mid-August is frost-free.
this region are comparatively high, generally between 75 and 85 degrees. The
extreme annual ranges are the highest in Canada; for example, 168 degrees at
Dawson and 174 degrees at Fort Good Hope and Fort Smith. Temperature
values for typical stations in this region are given in the following table.
Aklavik | Dawson | Fort Good Hope | Fort Smith | Norway House | |
Lat.(°N) | 68° 14′ | 64° 4′ | 66° 15′ | 60° 0′ | 53° 59′ |
Long.(°W) | 134° 50′ | 139° 29′ | 128° 38′ | 111° 52′ | 97° 50′ |
Years of Record |
1926-1950 | 1898-1950 | 1897-1942 | 1913-1949 | 1897-1945 |
Jan. | −18 | −19 | −24 | −14 | −10 |
Feb. | −17 | −12 | −19 | −9 | −5 |
Mar. | −9 | 5 | −10 | 4 | 9 |
Apr. | 8 | 29 | 14 | 27 | 30 |
May | 31 | 46 | 38 | 45 | 45 |
June | 49 | 57 | 54 | 55 | 56 |
July | 56 | 60 | 59 | 61 | 64 |
Aug. | 50 | 54 | 56 | 57 | 60 |
Sept. | 38 | 43 | 40 | 45 | 48 |
Oct. | 20 | 26 | 21 | 32 | 36 |
Nov. | −3 | 2 | −6 | 10 | 16 |
Dec. | −17 | −13 | −20 | −8 | −2 |
Year | 16 | 23 | 17 | 25 | 29 |
Range | 75 | 79 | 83 | 75 | 74 |
Highest | 93 | 95 | 95 | 103 | 94 |
Lowest | −62 | −73 | −79 | −71 | −63 |
This is more than double the amount which falls over most of the Archipelago,
mainly because of a greater summer rainfall. Thunderstorms, which are almost
unknown over the Northern Islands and relatively infrequent over the remainder
of the Archipelago, may be expected to occur about 4-8 times at any station
during the summer. Precipitation values for typical stations in this region
are given in the following table.
Mean Annual Total Precipitation Converted to Inches of Rain
Aklavik | Dawson | Fort Good Hope | Fort Smith | Norway House | ||||||
Lat.(°N) | 63° 14′ | 64° 4′ | 66° 15′ | 60° 0′ | 53° 59′ | |||||
Long.(°W) | 134° 50′ | 139° 29′ | 128° 38′ | 111° 52′ | 97° 50′ | |||||
Years of Record |
1926-1950 | 1901-1950 | 1897-1942 | 1913-1949 | 1897-1945 | |||||
R | S | R | S | R | S | R | S | R | S | |
Jan. | 0 | 5.5 | 0 | 8.6 | 0 | 5.3 | 0.01 | 6.0 | trace | 6.7 |
Feb. | 0 | 4.9 | trace | 6.7 | 0.01 | 4.9 | trace | 5.8 | trace | 7.6 |
Mar. | trace | 3.8 | 0.01 | 5.5 | 0 | 4.9 | trace | 5.8 | 0.11 | 10.3 |
Apr. | 0 | 5.1 | 0.15 | 3.1 | 0.01 | 4.8 | 0.12 | 3.7 | 0.34 | 3.8 |
May | 0.28 | 2.6 | 0.90 | 0.6 | 0.31 | 3.8 | 0.83 | 1.2 | 0.95 | 2.5 |
June | 0.65 | 1.8 | 1.24 | 0.1 | 0.94 | 0.4 | 1.50 | 0.1 | 1.94 | trace |
July | 1.42 | 0 | 1.63 | 0 | 1.55 | 0 | 2.03 | 0 | 2.24 | 0 |
Aug. | 1.38 | 1.0 | 1.73 | trace | 1.69 | 0.2 | 1.64 | trace | 2.30 | 0 |
Sept. | 0.63 | 3.3 | 1.26 | 1.5 | 0.91 | 2.8 | 1.47 | 1.0 | 1.72 | 1.4 |
Oct. | 0.06 | 8.1 | 0.36 | 8.0 | 0.20 | 8.9 | 0.45 | 5.6 | 0.67 | 3.0 |
Nov. | 0 | 7.8 | trace | 11.1 | 0 | 8.2 | 0.02 | 8.5 | 0.09 | 10.4 |
Dec. | 0 | 4.5 | 0.01 | 10.0 | 0.01 | 5.8 | trace | 8.1 | 0.02 | 7.7 |
Year | 9.26 | 12.81 | 10.63 | 12.65 | 15.72 |
end of September and the larger ones about mid-October. The dates of
freeze-up vary considerably from year to year. During the period 1941-49,
Lake Athabaska froze over as early as October 2 and as late as October 25.
The corresponding dates for Great Slave Lake are October 3 and October 31.
Kindle states that a boat was frozen in on Great Bear Lake on October 4,
1919, whereas a freeze-up as late as November 3 has been noted.
about mid-May for the more southerly lakes but not until about the third
week in June for Great Slave Lake. Break-up on Great Bear Lake is delayed
until well into July and frequently some ice remains in the lake all summer.
As a matter of fact, on June 23, 1900, the ice was sufficiently solid that
a crossing was made with sledges.
Bay from the Arctic seas. Its climate is intermediate in type between that
of the Archipelago and that of the adjacent Mackenzie Valley. The
temperature and general climatic regime is in most respects similar to
that of the Mackenzie Valley except that the annual range of temperature
is slightly smaller for coastal stations. The maritime influence is
evident in the summer months for temperatures are of the order of 10 degrees
lower than over the Mackenzie Valley.
limit at which tree growth is possible. Thus although most of the area is
as barren as the Arctic Islands, there are small isolated clumps of trees
scattered throughout the region.
type and annual distribution are almost identical with those of the
Mackenzie Valley. However, since this area is beyond the line of tree
growth, winter snow conditions are similar to those over the Arctic
Archipelago and storms of blowing snow occur with about the same
frequency.
stations in this region are given in the following tables.
Baker Lake | Chesterfield | Coppermine | |
Lat.(°N) | 64° 18′ | 63° 20′ | 67° 47′ |
Long.(°W) | 96° 5′ | 90° 43′ | 115° 15′ |
Years of Record | 1946-49 | 1921-49 | 1930-49 |
Jan. | −26 | −25 | −19 |
Feb. | −34 | −26 | −20 |
Mar. | −14 | −15 | −14 |
Apr. | −1 | 1 | 1 |
May | 18 | 21 | 22 |
June | 34 | 37 | 38 |
July | 48 | 48 | 49 |
Aug. | 50 | 47 | 47 |
Sept. | 37 | 37 | 36 |
Oct. | 21 | 22 | 19 |
Nov. | −1 | −1 | −4 |
Dec. | −16 | −17 | −16 |
Year | 10 | 11 | 12 |
Range | 84 | 74 | 69 |
Highest | 82 | 86 | 87 |
Lowest | −52 | −60 | −58 |
Mean Annual Total Precipitation Converted to Inches of Rain
Baker Lake | Chesterfield | Coppermine | ||||
Lat.(°N) | 64° 18′ | 63° 20′ | 67° 47′ | |||
Long.(°W) | 96° 5′ | 90° 43′ | 115° 15′ | |||
Years of Record | 1949 | 1931-49 | 1930-49 | |||
R | S | R | S | R | S | |
Jan. | No observations | trace | 3.7 | 0 | 6.2 | |
Feb. | No observations | 0 | 4.3 | 0 | 4.2 | |
Mar. | No observations | trace | 5.3 | 0 | 7.2 | |
Apr. | 0 | 1.3 | 0.01 | 8.0 | 0.20 | 4.7 |
May | trace | 0.1 | 0.10 | 5.3 | 0.08 | 4.9 |
June | 0.22 | 1.0 | 0.97 | 0.8 | 0.80 | 1.4 |
July | 0.08 | 0 | 1.88 | 0 | 1.45 | 0.1 |
Aug. | 0.08 | 0.1 | 1.71 | trace | 1.75 | 0.1 |
Sept. | 0.09 | 0.7 | 1.38 | 1.7 | 0.88 | 3.7 |
Oct. | 0.01 | 4.4 | 0.43 | 8.7 | 0.22 | 10.4 |
Nov. | 0 | 3.2 | 0.02 | 11.9 | 0 | 8.2 |
Dec. | 0 | 1.9 | 0 | 7.2 | trace | 5.4 |
Year | Incomplete | 12.19 | 11.03 |
moderated by the proximity of Hudson Bay, James Bay, the Gulf of St.
Lawrence and the Atlantic Ocean. However, the climate of the vast interior
is predominantly continental in character and resembles that of the
Mackenzie Valley, at least insofar as temperatures are concerned.
characterized by a long winter, a short stormy spring, a pleasantly warm
summer with adequate rain and a stormy fall. Since this region is
frequently traversed by cyclonic storms, temperature, precipitation and other
weather conditions can be extremely variable from one day to the next. Thaws
often occur in mid-winter over the eastern sections but seldom in the
districts west of James Bay. Frost may occur in any month in the northern
sections but is not common from mid-June to mid-August.
over the western section, 25-35 inches over most of the Quebec section and
near 50 inches along the north shore of the St. Lawrence. The precipitation,
which is chiefly of cyclonic origin, is intensified on the St. Lawrence
shoreline owing to an orographic lift of the air along the steep coast.
most densely populated region of Canada. However, the influx of settlers
into this area has been a mere trickle, for the rocky nature of the terrain
and the short frost-free period make the country unsuitable for agriculture.
Temperature and precipitation values for typical stations in this region are
given in following tables.
Goose | Harrington Harbour | Mistassini Post | Moose Factory | Nitchequon | |
Lat.(°N) | 53° 20′ | 50° 32′ | 50° 30′ | 51° 14′ | 53° 12′ |
Long.(°W) | 60° 25′ | 59° 30′ | 73° 55′ | 80° 30′ | 70° 35′ |
Years of Record |
1941-1949 | 1912-48 | 1915-1938 | 1897-1937 | 1942-1947 |
Jan. | 1 | 8 | −3 | −6 | −9 |
Feb. | 5 | 9 | −2 | −3 | −4 |
Mar. | 15 | 20 | 13 | 10 | 6 |
Apr. | 27 | 30 | 30 | 27 | 19 |
May | 40 | 38 | 45 | 41 | 34 |
June | 51 | 46 | 56 | 54 | 48 |
July | 62 | 53 | 62 | 61 | 57 |
Aug. | 58 | 54 | 59 | 59 | 55 |
Sept. | 51 | 48 | 49 | 51 | 47 |
Oct. | 39 | 39 | 39 | 38 | 33 |
Nov. | 24 | 28 | 23 | 21 | 16 |
Dec. | 8 | 16 | 6 | 4 | −4 |
Year | 32 | 32 | 32 | 30 | 25 |
Range | 61 | 46 | 65 | 67 | 66 |
Highest | 100 | 83 | 95 | 97 | 90 |
Lowest | −35 | −37 | −56 | −56 | −52 |
Mean annual Total Precipitation Converted to Inches of Rain
Goose |
Harrington
Harbour |
Mistassini
Post |
Moose
Factory |
Nitchequon | ||||||
Lat.(°N) | 53° 20′ | 50° 32′ | 50° 30′ | 51° 14′ | 53° 12′ | |||||
Long.(°W) | 60° 25′ | 59° 30′ | 73° 55′ | 80° 30′ | 70° 35′ | |||||
Years of Record |
1941-1948 | 1936-44 | 1915-1938 | 1897-1937 | 1942-1947 | |||||
R | S | R | S | R | S | R | S | R | S | |
Jan. | 0.07 | 17.2 | 0.49 | 36.2 | 0.06 | 19.5 | 0 | 14.2 | 0.05 | 15.7 |
Feb. | 0.13 | 23.7 | 0.85 | 47.5 | 0 | 16.4 | 0 | 10.7 | 0 | 17.8 |
Mar. | 0.04 | 18.6 | 0.50 | 45.0 | 0.31 | 16.0 | 0.17 | 11.3 | 0.18 | 17.0 |
Apr. | 0.36 | 12.6 | 1.06 | 17.9 | 0.81 | 8.7 | 0.52 | 6.3 | 0.33 | 14.3 |
May | 1.41 | 5.3 | 3.14 | 5.4 | 2.04 | 3.4 | 1.28 | 3.4 | 1.83 | 14.3 |
June | 2.50 | 1 | 3.80 | 0 | 3.01 | trace | 1.93 | 0.4 | 2.90 | 1.2 |
July | 3.24 | 0 | 3.35 | 0 | 4.05 | 0 | 2.29 | 0 | 3.90 | trace |
Aug. | 2.68 | 0 | 4.00 | 0 | 4.07 | trace | 3.03 | 0 | 4.31 | 0 |
Sept. | 2.10 | 1.0 | 4.93 | 0 | 3.69 | 0.5 | 2.44 | trace | 3.39 | 2.6 |
Oct. | 1.51 | 10.5 | 4.21 | 3.7 | 2.77 | 6.9 | 1.53 | 2.5 | 1.77 | 16.7 |
Nov. | 0.32 | 18.8 | 3.67 | 15.4 | 0.91 | 20.7 | 0.23 | 8.2 | 0.38 | 18.2 |
Dec. | 0.03 | 24.1 | 1.24 | 33.3 | 0.18 | 21.1 | 0.09 | 12.9 | trace | 18.3 |
Year | 27.57 | 51.68 | 33.22 | 20.47 | 32.47 |
stations, including Arctic stations, are the surface weather observations
which are plotted on weather charts at the various forecast offices. These
surface weather observations consist of the following elements: barometric
pressure and tendency; air temperature and dew-point; temperature extremes;
wind speed and direction; amount, type and height of clouds; type and amount
of precipitation, if any; visibility and obstructions to vision. At some
stations, additional observations are made of the winds aloft by means of
pilot balloons, and at a relatively small number of stations, temperature
and humidity data from the upper atmosphere are obtained with the aid of
radiosonde transmitters carried aloft on balloons.
vations at Arctic stations are the standard ones which are used at all
Canadian stations. However, in order that the best possible observations
may be made under Arctic conditions, some additional precautions should be
taken. The elements which require special care are as follows.
thermometer readings at low temperatures will not be affected by the presence
of the observer.
- 1. The instrument shelter should be approached from the leeward side.
- 2. The thermometers should not be handled while the readings are being taken.
- 3.
The thermometers should be read as quickly as possible after the door
of the instrument shelter has been opened.
- 1.
The observer should not come any closer to the instruments than
is necessary for accurate observation of the scale and should hold
his breath for the few seconds during which the reading is made. - 2.
If conditions are such that frost is forming on the thermometers,
they should be wiped with a clean dry cloth about fifteen minutes
before each observation. - 3.
When the temperature drops below −39°F, the freezing-point of mercury,
mercury-filled thermometers can not be used. During such periods the
air temperature is measured by means of thermometers filled with
alcohol or a mercury-thallium alloy and the maximum temperature is
obtained from the thermograph chart.
proficient in recognizing cloud types under conditions of semi-darkness.
Cirriform clouds, which are composed of ice crystals, form at much lower
altitudes than they do in temperate zones and are often observed as low
as 5000 feet or less. Convection is
of the sheet or stratus type rather than any form of cumulus.
The measurement of amount of snowfall is a difficult problem anywhere, and
especially so in the Arctic where drifting is considerable. During periods
of high winds, the air is filled with blowing snow to such an extent that
it is often difficult to tell whether snow is actually falling or not.
However, newly-fallen snow is usually a shade whiter than the old drifting
snow and will show up if the drifts are examined carefully. There is no method at present by means of which an exact measurement of the amount
of snowfall can be obtained. However, a good approximation is the
average of a series of measurements of the depth of freshly-fallen snow
in a level, semi-sheltered area.
observer’s breath condenses on the eyepiece and objective lenses of the
theodolite. A clean dry cloth should be kept handy to wipe the frost
from the lenses. The eyepiece cap should be removed in order to make
the eyepiece lens more accessible.
severe storms of blowing snow. In such cases the thermometers may not
indicate true values owing to the insulating effect of snow and the lack
of ventilation. The accumulation of snow in the shelter may be prevented
by covering the shelter with canvas for the duration of the storm. If
the station is located in an area where winds of moderate speeds are
frequent, a canvas cover is not advisable since it reduces the free cir–
culation of air in the shelter. Instead, the floor boards may be cut out
of the shelter entirely and a special shelf constructed for the thermograph.
clock mechanism in instruments such as a thermograph during extended
periods of low temperatures. The clock may be oiled lightly with a high–
quality low temperature oil, but it is often preferable to clean all
the oil from the mechanism and permit it to run dry.
Lieutenant (Major-General) Charles James Buchanan Riddell, R.A. 1839-1841 .
Bart. He entered the Royal Military Academy, Woolwich, in 1832 and was
appointed to his first station in Quebec in 1835. He was assigned the
task of establishing a magnetic observatory in Canada in 1839 as part of
a plan to obtain simultaneous magnetic observations from various parts of
the world. He supervised the erection of the Observatory at Toronto and
continued as its Director until ill-health compelled him to return to
England in 1841.
1817. He graduated from the Royal Military Academy, Woolwich in 1834.
In 183
as Lieutenant Riddell set out for Canada on a similar mission. He was
chosen to succeed Lieutenant Riddell and remained Director of the Obser–
vatory at Toronto until 1853, when it was transferred from military to
civil control. He completed the first expedition to Canada’s North-West
Territories whose primary purpose was to obtain scientific observations (q.v.).
eminent mathematician who had been a Sixth Wrangler at Cambridge, was
made provisional Director of the Observatory in 1853. In May 1855, he was appointed Professor of Meteorology and Director of the Observatory.
He received the appointment of Professor of Mathematics and Natural
Philosophy at the University of Toronto in August, 1855, and resigned
from his position as Director of the Observatory.
in mathematics at the Royal Naval College, Portsmouth, and Head of the
Naval College, Quebec. In August, 1855, he was appointed Professor of
Meteorology at the University of Toronto and Director of the Observatory.
When the Meteorological Service of Canada was organized in 1871, Professor
Kingston was made Director of the Meteorological Service as well as Director
of the Magnetic Observatory. He inaugurated the issuing of public weather
forecasts and storm warnings by the Meteorological Service in 1876. He
retired in 1880 on account of ill-heath.
Engla[n]d. He was a brilliant mathematician, and like Professors Cherriman
and Kingston, he was a Sixth Wranger of St. John’s College, Cambridge. In
1870 he was a member of the British Eclipse Expedition to Spain. He visited
Canada and the United States in 1871 and returned to Canada in 1872 to accept
the position of Deputy Superintendent of the Meteorological Service. He
was appointed Director in 1880 and continued to serve in this capacity until
his death in 1894.
attended Upper Canada College and entered the Meteorological Service
in 1872 at the age of 15. For some years prior to the death of Mr.
Carpmael, he was Senior Inspector and Probability Officer at the Toronto
Observatory. In 1884-5 he had charge of the chief station in Hudson
Strait
conditions in the Strait
28, 1894. He was elected a member of the International Meteorological
Committee in 1907. He was knighted on June 3, 1916, for his services
to meteorology in Canada, and retired on July 1, 1929. At the time of
his death in 1940, he was the oldest member of the Royal Canadian Institute.
He was an original member of the American Meteorological Society and its
second president, as well as an Honorary Life member of the Royal Met–
eorological Society, London.
He was gold medalist in Physics at the University of Toronto in 1900 and
was awarded the 1851 Exhibition Science Research Scholarship. He was Prof–
essor of Physics at the University of Allahabad, India, 1903-4, and
Imperial Meteorologist to the Government of India 1905-10. He joined
the Meteorological Service of Canada in 1910 as Meteorological Physicist,
was appointed Assistant-Director in 1925 and Director in 1929. In the
First World War, 1914-18, his services were loaned to the British
Admiralty to work on the separation of helium from natural gas. He was responsible for directing the expansion of the Meteorological Service
to meet the needs of Trans-Canada Air Lines, and of the Canadian armed
forces during the Second World War, 1939-45. His principal scientific
investigations were on the theory of the cup anemometer and windvane
from which were designed and perfected a 3-cup anemometer and stream–
lined windvane. He re-designed both the Kew and Fortin barometers and
the barograph, as well as a special type of weight barograph in co–
operation with Mr. W.E.K. Middleton. He has written many scientific
and non-technical articles on meteorological subjects and has received
numerous civil honours and awards. He was an Honorary Professor of
Meteorology at the University of Toronto 1940-46. He retired from the
Meteorological Service in 1946 in his 75th year, but continues to serve
as President of the Commission on Instruments and Methods of Observation
of the International Meteorological Organization, to which office he was
elected in 1946.
attending the University of Toronto and Harvard University, he joined the
Department of Terrestrial Magnetism, the Carnegie Institute in Washington
in 1917. He was attached to the Research Division of the U.S. Navy in 1918.
As Director of the Apia Observatory in Samoa from 1924-29, he was largely
responsible for the organization of a storm warning service for the South
Pacific. He was appointed aerologist in the Meteorological Service of New
Zealand in 1930. He joined the Meteorological Service of Canada as Chief
Physicist in 1932, was appointed Assistant-Controller in 1939 and Controller in 1946. He has published important papers on Upper Winds over the
South Pacific and Canada. He was elected President of the Royal
Astronomical Society of Canada in 1949. He has supervised the post–
war decentralization of the Meteorological Service of Canada and the
implementation of the join
States. He was awarded the O.B.E. in the King’s Birthday Honours List
in July. 1946, in recognition of his services to Canadian Meteorology.
1. Bell, J.B. - Explorations in the Great Bear Lake Region. Geogr. Journ.
v. 18, 1901. p. 252.
2. Bethune, W.C. - Canada’s Eastern Arctic. Dept. of the Interior. Ottawa, 1934.
3. Bethune, W.C. - Canada’s Western Northland. Dept. of Mines and Resources.
Ottawa, 1937.
4. British Arctic Pilot, v. 3. 1931.
5. Canadian Government Reports. - Dept. of Marine and Fisheries Annual Report
for the Year Ending June 30, 1871.
6. Canadian Government Reports. - Dept. of Marine and Fisheries. Report of the
Hudson’s Bay Expedition Under the Command of
Lieut. A.R. Gordon, R.N., 1884-1885-1886.
7. Clayton, H.H. - The Bearing of Polar Meteorology on World Weather. Problems
of Polar Research. Amer. Geogr. Soc. New York, 1928.
8. Connor, A.J. - The Climate of Canada. Canada Year Book, 1949.
9. Contributions to Our Knowledge of the Meteorology of the Arctic Regions,
H.M. Stationery Office, London, 1879-1885.
10. Die Internationale Polarforschung 1882-1883, die Beobachtungs-Ergenbnisse
der Deutschen Stationen, Band I, Kingua-Fjord. Berlin, 1886.
11. Greely, Lt. A.W. - International Polar Expedition, Report of the United
States Expedition to Lady Franklin Bay, Grinnell Land.
Washington, 1
9
8
88.
12. Hare, F.K., and Montgomery, M.R. - Ice Open Water and Winter Climate in
the Eastern Arctic of North America.
Arctic, v. 2, nos. 2 and 3. Ottawa, 1949.
13. Jenness, J.L. - Permafrost in Canada. Arctic, v. 2, no. 1. Ottawa, 1949.
14. Kindle, E.M. - Arrival and Departure of Winter Conditions in the Mackenzie
River Basin. Geogr. Rev. v. 10, 1920. pp. 397-399.
15. Koeppe, C.E. - The Canadian Climate. Bloomington, Ill. 1931.
16. Laut, A.C. - The Conquest of the Great North-West. New York, 1914.
17. Lothian, W.F. - Yukon Territory. Dept. of Mines & Resources. Ottawa, 1947.
18. Low, A.P. - The Cruise of the Neptune. Ottawa, 1906.
19. Meteorological Service of Canada, Toronto. - Canadian Polar Year Expeditions
1932-33, v. 1. 1939.
20. Meteorological Service of Canada, Toronto. - Monthly Records of Meteorological
Observations, 1871-1949.
21. Meteorological Service of Canada, Toronto. - Meteorology of the Canadian
Arctic. 1944.
22. Meteorological Service of Canada, Toronto. - Unpublished letters and records
on file at the Head Office of
the Meteorological Service,
Toronto.
23. Nordenskjold, O., and Mecking, L. - The Geography of Polar Regions. Amer.
Geogr. Soc. New York, 1928.
24. Osborn, S. - Stray Leaves from an Arctic Journal. Edinburgh, 1865.
25. Parry, W.E. - Journal of a Voyage for the Discovery of a North-West Passage
from the Atlantic to the Pacific Performed in the Years
1819-20. Philadelphia, 1821.
26. Patterson, J. - A Centur
e
y
of Canadian Meteorology. Q.J. R
0
o
y. Met. Soc.
v. 66. 1940.
27. Stefansson, V. - Choosing Sites for Arctic Stations, New York, 1942. p. 3.
28. Stefansson, V. - The Friendly Arctic. New York, 1944.
29. Sverdrup, H.U. - Ubersicht uber das Klima des Polarmeerss und des Kanadischen
Archipels. Handbuch der Klimatologie, herausgegeben von
W. Koppen und R. Geiger. Band 2, Teil K. Berlin, 1935.
30. Sverdrup, H.U. - Meteorology, The Norwegian North Polar Expedition with the
“Maud” 1918-25. Vol. 2, part 1. Discussion. Bergen, 1935.
31. Tanner, V. - Newfoundland-Labrador. Cambridge, 1947.
32. The Royal Society, London. - Observations of the International Polar Year
Expeditions, 1882-83, Fort Rae.
33. The Royal Society, London. - British Polar Year Expedition, Fort Rae.
1932-33, v. 1. 1937.
34. Thiessen, A.D. - The Founding of the Toronto Magnetic Observatory and the
Canadian Meteorological Service. Journ. Roy. Astron. Soc.
of Canada. Vols. 34-40. Sept. 1940 - Dec. 1946.
35. Thwaites, R.G. - Jesuit Relations and Allied Documents, v. 1, pp. 245-7.
v. 3, pp. 53-5. Cleveland, 1896-1901.
36. U.S. Navy Hydrographic Office. - Sailing Directions for Baffin Bay and
Davis Strait. Washington, 1947.
37. U.S. Navy Hydrographic Office. - Sailing Directions for Northern Canada.
Washington, 1946.
38. Wallace, W.S. - Sir Henry Lefroy’s Journey to the North-West in 1843-4.
Trans. Roy. Soc. of Canada. 1938.
(mbs)
JANUARYMEAN PRESSURE
(mbs)
MARCH MEAN PRESSURE
(mbs)
MAYMEAN PRESSURE
(mbs)
JULY MEAN PRESSURE
(mbs)
SEPTEMBERMEAN PRESSURE
(mbs)
NOVEMBER MEAN TEMPERATURE
(°F)
JANUARYMEAN TEMPERATURE
(°F)
MARCH MEAN TEMPERATURE
(°F)
MAYMEAN TEMPERATURE
(°F)
JULY MEAN TEMPERATURE
(°F)
SEPTEMBERMEAN TEMPERATURE
(°F)
NOVEMBER